Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
2.
Brain ; 144(2): 574-583, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33459760

RESUMO

The von Willebrand Factor A domain containing 1 protein, encoded by VWA1, is an extracellular matrix protein expressed in muscle and peripheral nerve. It interacts with collagen VI and perlecan, two proteins that are affected in hereditary neuromuscular disorders. Lack of VWA1 is known to compromise peripheral nerves in a Vwa1 knock-out mouse model. Exome sequencing led us to identify bi-allelic loss of function variants in VWA1 as the molecular cause underlying a so far genetically undefined neuromuscular disorder. We detected six different truncating variants in 15 affected individuals from six families of German, Arabic, and Roma descent. Disease manifested in childhood or adulthood with proximal and distal muscle weakness predominantly of the lower limbs. Myopathological and neurophysiological findings were indicative of combined neurogenic and myopathic pathology. Early childhood foot deformity was frequent, but no sensory signs were observed. Our findings establish VWA1 as a new disease gene confidently implicated in this autosomal recessive neuromyopathic condition presenting with child-/adult-onset muscle weakness as a key clinical feature.


Assuntos
Proteínas da Matriz Extracelular/genética , Doenças Neuromusculares/genética , Adolescente , Adulto , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Doenças Neuromusculares/patologia , Linhagem , Sequenciamento Completo do Exoma
3.
Mov Disord ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33200461

RESUMO

BACKGROUND: Parkinson's disease psychosis is a prevalent yet underreported and understudied nonmotor manifestation of Parkinson's disease and, arguably, the most debilitating. It is unknown if α-synuclein plays a role in psychosis, and if so, this endophenotype may be crucial for elucidating the neurodegenerative process. OBJECTIVES: We sought to dissect the underlying neurobiology of novelty-induced hyperactivity, reminiscent of psychosis-like behavior, in human α-synuclein BAC rats. RESULTS: Herein, we demonstrate a prodromal psychosis-like phenotype, including late-onset sensorimotor gating disruption, striatal hyperdopaminergic signaling, and persistent novelty-induced hyperactivity (up to 18 months), albeit reduced baseline locomotor activity, that is augmented by d-amphetamine and reversed by classical and atypical antipsychotics. MicroRNA-mediated α-synuclein downregulation in the ventral midbrain rescues the hyperactive phenotype and restores striatal dopamine levels. This phenotype is accompanied by an abundance of age-, brain region- and gene dose-dependent aberrant α-synuclein, including hyperphosphorylation, C-terminal truncation, aggregation pathology, and mild nigral neurodegeneration (27%). CONCLUSIONS: Our findings demonstrate a potential role of α-synuclein in Parkinson's disease psychosis and provide evidence of region-specific perturbations prior to neurodegeneration phenoconversion. The reported phenotype coincides with the latest clinical findings that suggest a premotor hyperdopaminergic state may occur, while at the same time, premotor psychotic symptoms are increasingly being recognized. © 2020 International Parkinson and Movement Disorder Society.

4.
Sci Rep ; 10(1): 16131, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999308

RESUMO

The proper communication between gut and brain is pivotal for the maintenance of health and, dysregulation of the gut-brain axis can lead to several clinical disorders. In Parkinson's disease (PD) 85% of all patients experienced constipation many years before showing any signs of motor phenotypes. For differential diagnosis and preventive treatment, there is an urgent need for the identification of biomarkers indicating early disease stages long before the disease phenotype manifests. DJ-1 is a chaperone protein involved in the protection against PD and genetic mutations in this protein have been shown to cause familial PD. However, how the deficiency of DJ-1 influences the risk of PD remains incompletely understood. In the present study, we provide evidence that DJ-1 is implicated in shaping the gut microbiome including; their metabolite production, inflammation and innate immune cells (ILCs) development. We revealed that deficiency of DJ-1 leads to a significant increase in two specific genera/species, namely Alistipes and Rikenella. In DJ-1 knock-out (DJ-1-/-) mice the production of fecal calprotectin and MCP-1 inflammatory proteins were elevated. Fecal and serum metabolic profile showed that malonate which influences the immune system was significantly more abundant in DJ-1-/- mice. DJ-1 appeared also to be involved in ILCs development. Further, inflammatory genes related to PD were augmented in the midbrain of DJ-1-/- mice. Our data suggest that metabolites and inflammation produced in the gut could be used as biomarkers for PD detection. Perhaps, these metabolites and inflammatory mediators could be involved in triggering inflammation resulting in PD pathology.

5.
Front Cell Dev Biol ; 8: 572281, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072755

RESUMO

The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome (OMIM 277000) is characterized by agenesis of the uterus and upper part of the vagina in females with normal ovarian function. While genetic causes have been identified for a small subset of patients and epigenetic mechanisms presumably contribute to the pathogenic unfolding, too, the etiology of the syndrome has remained largely enigmatic. A comprehensive understanding of gene activity in the context of the disease is crucial to identify etiological components and their potential interplay. So far, this understanding is lacking, primarily due to the scarcity of samples and suitable tissue. In order to close this gap, we profiled endometrial tissue of uterus rudiments in a large cohort of MRKH patients using RNA-seq and thereby provide a genome-wide view on the altered transcription landscape of the MRKH syndrome. Differential and co-expression analyses of the data identified cellular processes and candidate genes that converge on a core network of interconnected regulators that emerge as pivotal for the perturbed expression space. With these results and browsable access to the rich data through an online tool we seek to accelerate research to unravel the underlying biology of the syndrome.

6.
Aging (Albany NY) ; 12(19): 18889-18906, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33017301

RESUMO

Parkinson's disease (PD) is an age-dependent neurodegenerative disorder. Besides characteristic motor symptoms, patients suffer from cognitive impairments linked to pathology in cortical areas. Due to obvious challenges in tracing the underlying molecular perturbations in human brain over time, we took advantage of a well-characterized PD rat model. Using RNA sequencing, we profiled the frontocortical transcriptome of post-mortem patient samples and aligned expression changes with perturbation patterns obtained in the model at 5 and 12 months of age reflecting a presymptomatic and symptomatic time point. Integrating cell type-specific reference data, we identified a shared expression signature between both species that pointed to oligodendrocyte-specific, myelin-associated genes. Drawing on longitudinal information from the model, their nearly identical upregulation in both species could be traced to two distinctive perturbance modes. While one mode exhibited age-independent alterations that affected genes including proteolipid protein 1 (PLP1), the other mode, impacting on genes like myelin-associated glycoprotein (MAG), was characterized by interferences of disease gene and adequate expression adaptations along aging. Our results highlight that even for a group of functionally linked genes distinct interference mechanisms may underlie disease progression that cannot be distinguished by examining the terminal point alone but instead require longitudinal interrogation of the system.

7.
J Neurol ; 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106888

RESUMO

In view of upcoming clinical trials, quantitative molecular markers accessible in peripheral blood are of critical importance as prognostic or pharmacodynamic markers in genetic neurodegenerative diseases such as Spinocerebellar Ataxia Type 3 (SCA3), in particular for signaling target engagement. In this pilot study, we focused on the quantification of ataxin-3, the protein altered in SCA3, in human peripheral blood mononuclear cells (PBMCs) acquired from preataxic and ataxic SCA3 mutation carriers as well as healthy controls, as a molecular marker directly related to SCA3 pathophysiology. We established two different highly sensitive TR-FRET-based immunoassays to measure the protein levels of either total full-length, non-expanded and expanded, ataxin-3 or specifically polyQ-expanded ataxin-3. In PBMCs, a clear discrimination between SCA3 mutation carrier and controls were seen measuring polyQ-expanded ataxin-3 protein level. Additionally, polyQ-expanded ataxin-3 protein levels correlated with disease progression and clinical severity as assessed by the Scale for the Assessment and Rating of Ataxia. Total full-length ataxin-3 protein levels were directly influenced by the expression levels of the polyQ-expanded ataxin-3 protein, but were not correlated with clinical parameters. Assessment of ataxin-3 levels in fibroblasts or induced pluripotent stem cells allowed to distinguish mutation carriers from controls, thus providing proof-of-principle validation of our PBMC findings across cell lines. Total full-length or polyQ-expanded ataxin-3 protein was not detectable by TR-FRET assays in other biofluids like plasma or cerebrospinal fluid, indicating the need for ultra-sensitive assays for these biofluids. Standardization studies revealed that tube systems, blood sampling, and PBMC preparation may influence ataxin-3 protein levels indicating a high demand for standardized protocols in biomarker studies. In conclusion, the polyQ-expanded ataxin-3 protein is a promising candidate as a molecular target engagement marker in SCA3 in future clinical trials, determinable even in-easily accessible-peripheral blood biomaterials. These results, however, require validation in a larger cohort and further standardization of modifying conditions.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32923905

RESUMO

PURPOSE: Precision oncology connects highly complex diagnostic procedures with patient histories to identify individualized treatment options in interdisciplinary molecular tumor boards (MTBs). Detailed data on MTB-guided treatments and outcome with a focus on advanced GI cancers have not been reported yet. PATIENTS AND METHODS: Next-generation sequencing of tumor and normal tissue pairs was performed between April 2016 and February 2018. After identification of relevant molecular alterations, available clinical studies or in-label, off-label, or matched experimental treatment options were recommended. Follow-up data and a response assessment that was based on radiologic imaging were recorded. RESULTS: Ninety-six patients were presented to the MTB of Tuebingen University Hospital. Sixteen (17%) showed "pathogenic" or "likely pathogenic" germline variants. Recommendations on the basis of molecular alterations or tumor mutational burden were given for 41 patients (43%). Twenty-five received the suggested drug, and 20 were evaluable for best response assessment. Three patients (15%) reached a partial response (PR), and 6 (30%), stable disease (SD), whereas 11 (55%) had tumor progression (progressive disease). Median progression-free survival (PFS) for all treated and evaluable patients was 2.8 months (range, 1.0-9.0 months), and median overall survival (OS) of all treated patients was 5.2 months (range, 0.1 months to not reached). Patients with SD for ≥ 3 months or PR compared with progressive disease showed both a statistically significant longer median PFS (7.8 months [95% CI, 4.2 to 11.4 months] v 2.2 months [95% CI, 1.5 to 2.8 months], P < .0001) and median OS (18.0 months [95% CI, 10.4 to 25.6 months] v 3.8 months [95% CI, 2.3 to 5.4 months], P < .0001). CONCLUSION: Next-generation sequencing diagnostics of advanced GI cancers identified a substantial number of pathogenic or likely pathogenic germline variants and unique individual treatment options. Patients with PR or SD in the course of MTB-recommended treatments seemed to benefit with respect to PFS and OS.

9.
Lancet Neurol ; 19(9): 738-747, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32822634

RESUMO

BACKGROUND: Spinocerebellar ataxias (SCAs) are autosomal dominant neurodegenerative diseases. Our aim was to study the conversion to manifest ataxia among apparently healthy carriers of mutations associated with the most common SCAs (SCA1, SCA2, SCA3, and SCA6), and the sensitivity of clinical and functional measures to detect change in these individuals. METHODS: In this prospective, longitudinal, observational cohort study, based at 14 referral centres in seven European countries, we enrolled children or siblings of patients with SCA1, SCA2, SCA3, or SCA6. Eligible individuals were those without ataxia, defined by a score on the Scale for the Assessment and Rating of Ataxia (SARA) of less than 3; participants had to be aged 18-50 years for children or siblings of patients with SCA1, SCA2, or SCA3, and 35-70 years for children or siblings of patients with SCA6. Study visits took place at recruitment and after 2, 4, and 6 years (plus or minus 3 months). We did genetic testing to identify mutation carriers, with results concealed to the participant and clinical investigator. We assessed patients with clinical scales, questionnaires of patient-reported outcome measures, a rating of the examiner's confidence of presence of ataxia, and performance-based coordination tests. Conversion to ataxia was defined by an SARA score of 3 or higher. We analysed the association of factors at baseline with conversion to ataxia and the evolution of outcome parameters on temporal scales (time from inclusion and time to predicted age at ataxia onset) in the context of mutation status and conversion status. This study is registered with ClinicalTrials.gov, NCT01037777. FINDINGS: Between Sept 13, 2008, and Oct 28, 2015, 302 participants were enrolled. We analysed data for 252 participants with at least one follow-up visit. 83 (33%) participants were from families affected by SCA1, 99 (39%) by SCA2, 46 (18%) by SCA3, and 24 (10%) by SCA6. In participants who carried SCA mutations, 26 (52%) of 50 SCA1 carriers, 22 (59%) of 37 SCA2 carriers, 11 (42%) of 26 SCA3 carriers, and two (13%) of 15 SCA6 carriers converted to ataxia. One (3%) of 33 SCA1 non-carriers and one (2%) of 62 SCA2 non-carriers converted to ataxia. Owing to the small number of people who met our criteria for ataxia, subsequent analyses could not be done in carriers of the SCA6 mutation. Baseline factors associated with conversion were age (hazard ratio 1·13 [95% CI 1·03-1·24]; p=0·011), CAG repeat length (1·25 [1·11-1·41]; p=0·0002), and ataxia confidence rating (1·72 [1·23-2·41]; p=0·0015) for SCA1; age (1·08 [1·02-1·14]; p=0·0077) and CAG repeat length (1·65 [1·27-2·13]; p=0·0001) for SCA2; and age (1·27 [1·09-1·50]; p=0·0031), confidence rating (2·60 [1·23-5·47]; p=0·012), and double vision (14·83 [2·15-102·44]; p=0·0063) for SCA3. From the time of inclusion, the SARA scores of SCA1, SCA2, and SCA3 mutation carriers increased, whereas they remained stable in non-carriers. On a timescale defined by the predicted time of ataxia onset, SARA progression in SCA1, SCA2, and SCA3 mutation carriers was non-linear, with marginal progression before ataxia and increasing progression after ataxia onset. INTERPRETATION: Our study provides quantitative data on the conversion of non-ataxic SCA1, SCA2, and SCA3 mutation carriers to manifest ataxia. Our data could prove useful for the design of preventive trials aimed at delaying the onset of ataxia by aiding sample size calculations and stratification of study participants. FUNDING: European Research Area Network for Research Programmes on Rare Diseases, Polish Ministry of Science and Higher Education, Italian Ministry of Health, European Community's Seventh Framework Programme.


Assuntos
Progressão da Doença , Mutação/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Adulto , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
10.
Cancers (Basel) ; 12(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825510

RESUMO

The detection of somatic driver mutations by next-generation sequencing (NGS) is becoming increasingly important in the care of advanced melanoma patients. In our study, we evaluated the NGS results of 82 melanoma patients from clinical routine in 2017. Besides determining the tumor mutational burden (TMB) and annotation of all genetic driver alterations, we investigated their potential as a predictor for resistance to immune checkpoint inhibitors (ICI) and as a distinguishing feature between melanoma subtypes. Melanomas of unknown primary had a similar mutation pattern and TMB to cutaneous melanoma, which hints at its cutaneous origin. Besides the typical hotspot mutation in BRAF and NRAS, we frequently observed CDKN2A deletions. Acral and mucosal melanomas were dominated by CNV alterations affecting PDGFRA, KIT, CDK4, RICTOR, CCND2 and CHEK2. Uveal melanoma often had somatic SNVs in GNA11/Q and amplification of MYC in all cases. A significantly higher incidence of BRAF V600 mutations and EGFR amplifications, PTEN and TP53 deletions was found in patients with disease progression while on ICI. Thus, NGS might help to characterize melanoma subtypes more precisely and to identify possible resistance mechanisms to ICI therapy. Nevertheless, NGS based studies, including larger cohorts, are needed to support potential genetic ICI resistance mechanisms.

11.
Orphanet J Rare Dis ; 15(1): 206, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787960

RESUMO

BACKGROUND: Rare diseases are individually rare but globally affect around 6% of the population, and in over 70% of cases are genetically determined. Their rarity translates into a delayed diagnosis, with 25% of patients waiting 5 to 30 years for one. It is essential to raise awareness of patients and clinicians of existing gene and variant-specific therapeutics at the time of diagnosis to avoid that treatment delays add up to the diagnostic odyssey of rare diseases' patients and their families. AIMS: This paper aims to provide guidance and give detailed instructions on how to write homogeneous systematic reviews of rare diseases' treatments in a manner that allows the capture of the results in a computer-accessible form. The published results need to comply with the FAIR guiding principles for scientific data management and stewardship to facilitate the extraction of datasets that are easily transposable into machine-actionable information. The ultimate purpose is the creation of a database of rare disease treatments ("Treatabolome") at gene and variant levels as part of the H2020 research project Solve-RD. RESULTS: Each systematic review follows a written protocol to address one or more rare diseases in which the authors are experts. The bibliographic search strategy requires detailed documentation to allow its replication. Data capture forms should be built to facilitate the filling of a data capture spreadsheet and to record the application of the inclusion and exclusion criteria to each search result. A PRISMA flowchart is required to provide an overview of the processes of search and selection of papers. A separate table condenses the data collected during the Systematic Review, appraised according to their level of evidence. CONCLUSIONS: This paper provides a template that includes the instructions for writing FAIR-compliant systematic reviews of rare diseases' treatments that enables the assembly of a Treatabolome database that complement existing diagnostic and management support tools with treatment awareness data.

12.
Front Neurol ; 11: 524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655481

RESUMO

Over the past two decades, our understanding of Parkinson's disease (PD) has been gleaned from the discoveries made in familial and/or sporadic forms of PD in the Caucasian population. The transferability and the clinical utility of genetic discoveries to other ethnically diverse populations are unknown. The Indian population has been under-represented in PD research. The Genetic Architecture of PD in India (GAP-India) project aims to develop one of the largest clinical/genomic bio-bank for PD in India. Specifically, GAP-India project aims to: (1) develop a pan-Indian deeply phenotyped clinical repository of Indian PD patients; (2) perform whole-genome sequencing in 500 PD samples to catalog Indian genetic variability and to develop an Indian PD map for the scientific community; (3) perform a genome-wide association study to identify novel loci for PD and (4) develop a user-friendly web-portal to disseminate results for the scientific community. Our "hub-spoke" model follows an integrative approach to develop a pan-Indian outreach to develop a comprehensive cohort for PD research in India. The alignment of standard operating procedures for recruiting patients and collecting biospecimens with international standards ensures harmonization of data/bio-specimen collection at the beginning and also ensures stringent quality control parameters for sample processing. Data sharing and protection policies follow the guidelines established by local and national authorities.We are currently in the recruitment phase targeting recruitment of 10,200 PD patients and 10,200 healthy volunteers by the end of 2020. GAP-India project after its completion will fill a critical gap that exists in PD research and will contribute a comprehensive genetic catalog of the Indian PD population to identify novel targets for PD.

13.
J Mol Diagn ; 22(9): 1205-1215, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619640

RESUMO

Autozygosity is associated with an increased risk of genetic rare disease, thus being a relevant factor for clinical genetic studies. More than 2400 exome sequencing data sets were analyzed and screened for autozygosity on the basis of detection of >1 Mbp runs of homozygosity (ROHs). A model was built to predict if an individual is likely to be a consanguineous offspring (accuracy, 98%), and probability of consanguinity ranges were established according to the total ROH size. Application of the model resulted in the reclassification of the consanguinity status of 12% of the patients. The analysis of a subset of 79 consanguineous cases with the Rare Disease (RD)-Connect Genome-Phenome Analysis Platform, combining variant filtering and homozygosity mapping, enabled a 50% reduction in the number of candidate variants and the identification of homozygous pathogenic variants in 41 patients, with an overall diagnostic yield of 52%. The newly defined consanguinity ranges provide, for the first time, specific ROH thresholds to estimate inbreeding within a pedigree on disparate exome sequencing data, enabling confirmation or (re)classification of consanguineous status, hence increasing the efficiency of molecular diagnosis and reporting on secondary consanguinity findings, as recommended by American College of Medical Genetics and Genomics guidelines.

14.
Proc Natl Acad Sci U S A ; 117(31): 18661-18669, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675242

RESUMO

Huntington's disease (HD) is a progressive incurable neurodegenerative disorder characterized by motor and neuropsychiatric symptoms. It is caused by expansion of a cytosine-adenine-guanine triplet in the N-terminal domain of exon 1 in the huntingtin (HTT) gene that codes for an expanded polyglutamine stretch in the protein product which becomes aggregation prone. The mutant Htt (mHtt) aggregates are associated with components of the ubiquitin-proteasome system, suggesting that mHtt is marked for proteasomal degradation and that, for reasons still debated, are not properly degraded. We used a novel HD rat model, proteomic analysis, and long-term live neuronal imaging to characterize the effects of ubiquitination on aggregation of mHtt and subsequent cellular responses. We identified two lysine residues, 6 and 9, in the first exon of mHtt that are specifically ubiquitinated in striatal and cortical brain tissues of mHtt-transgenic animals. Expression of mHtt exon 1 lacking these ubiquitination sites in cortical neurons and cultured cells was found to slow aggregate appearance rates and reduce their size but at the same time increase the number of much smaller and less visible ones. Importantly, expression of this form of mHtt was associated with elevated death rates. Proteomic analysis indicated that cellular reactions to mHtt expression were weaker in cells expressing the lysineless protein, possibly implying a reduced capacity to cope with the proteotoxic stress. Taken together, the findings suggest a novel role for ubiquitination-attenuation of the pathogenic effect of mHtt.


Assuntos
Proteína Huntingtina , Doença de Huntington , Ubiquitinação/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Lisina/química , Lisina/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma , Agregação Patológica de Proteínas/metabolismo , Ratos , Ratos Transgênicos
15.
Am J Hum Genet ; 107(2): 364-373, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32707086

RESUMO

We report bi-allelic pathogenic HPDL variants as a cause of a progressive, pediatric-onset spastic movement disorder with variable clinical presentation. The single-exon gene HPDL encodes a protein of unknown function with sequence similarity to 4-hydroxyphenylpyruvate dioxygenase. Exome sequencing studies in 13 families revealed bi-allelic HPDL variants in each of the 17 individuals affected with this clinically heterogeneous autosomal-recessive neurological disorder. HPDL levels were significantly reduced in fibroblast cell lines derived from more severely affected individuals, indicating the identified HPDL variants resulted in the loss of HPDL protein. Clinical presentation ranged from severe, neonatal-onset neurodevelopmental delay with neuroimaging findings resembling mitochondrial encephalopathy to milder manifestation of adolescent-onset, isolated hereditary spastic paraplegia. All affected individuals developed spasticity predominantly of the lower limbs over the course of the disease. We demonstrated through bioinformatic and cellular studies that HPDL has a mitochondrial localization signal and consequently localizes to mitochondria suggesting a putative role in mitochondrial metabolism. Taken together, these genetic, bioinformatic, and functional studies demonstrate HPDL is a mitochondrial protein, the loss of which causes a clinically variable form of pediatric-onset spastic movement disorder.


Assuntos
Encefalopatias/genética , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Criança , Feminino , Humanos , Masculino , Mitocôndrias/genética , Linhagem , Fenótipo , Adulto Jovem
16.
BMC Med Educ ; 20(1): 218, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660496

RESUMO

BACKGROUND: Audience response systems allow to activate the audience and to receive a direct feedback of participants during lectures. Modern systems do not require any proprietary hardware anymore. Students can directly respond on their smartphone. Several studies reported about a high level of satisfaction of students when audience response systems are used, however their impact on learning success is still unclear. METHODS: In order to evaluate the impact of an audience response system on the learning success we implemented the audience response system eduVote into a seminar series and performed a controlled crossover study on its impact on assessments. One hundred fifty-four students in nine groups were taught the same content. In four groups, eduVote was integrated for the first topic while five groups were taught this topic without the audience response systems. For a second topic, the groups were switched: Those groups who were taught before using eduVote were now taught without the audience response system and vice versa. We then analysed the impact of the audience response system on the students' performance in a summative assessment and specifically focused on questions dealing with the topic, for which the audience response system was used during teaching. We further assessed the students' perception on the use of eduVote using questionnaires. RESULTS: In our controlled crossover study we could not confirm an impact of the audience response system eduVote on long-term persistence i.e. the students' performance in the summative assessment. Our evaluation revealed that students assessed the use of eduVote very positively, felt stronger engaged and better motivated to deal with the respective topics and would prefer their integration into additional courses as well. In particular we identified that students who feel uncomfortable with answering questions in front of others profit from the use of an audience response system during teaching. CONCLUSIONS: Audience response systems motivate and activate students and increase their engagement during classes. However, their impact on long-term persistence and summative assessments may be limited. Audience response systems, however, specifically allow activating students which cannot be reached by the traditional way of asking questions without such an anonymous tool.

17.
Radiother Oncol ; 151: 182-189, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32687856

RESUMO

PURPOSE: Definitive radiochemotherapy (RCTX) with curative intent is one of the standard treatment options in patients with locally advanced head and neck squamous cell carcinoma (HNSCC). Despite this intensive therapy protocol, disease recurrence remains an issue. Therefore, we tested the predictive capacity of liquid biopsies as a novel biomarker during RCTX in patients with HNSCC. MATERIAL AND METHODS: We sequenced the tumour samples of 20 patients with locally advanced HNSCC to identify driver mutations. Subsequently, we performed a longitudinal analysis of circulating tumour DNA (ctDNA) dynamics during RCTX. Deep sequencing and UMI-based error suppression for the identification of driver mutations and HPV levels in the plasma enabled treatment-response monitoring prior, during and after RCTX. RESULTS: In 85% of all patients ctDNA was detectable, showing a significant correlation with the gross tumour volume (p-value 0.032). Additionally, the tumour allele fraction in the plasma was negatively correlated with the course of treatment (p-value <0.05). If ctDNA was detectable at the first follow-up, disease recurrence was seen later on. Circulating HPV DNA (cvDNA) could be detected in three patients at high levels, showing a similar dynamic behaviour to the ctDNA throughout treatment, and disappeared after treatment. CONCLUSIONS: Monitoring RCTX treatment-response using liquid biopsy in patients with locally advanced HNSCC is feasible. CtDNA can be seen as a surrogate marker of disease burden, tightly correlating with the gross tumour volume prior to the treatment start. The observed kinetic of ctDNA and cvDNA showed a negative correlation with time and treatment dosage in most patients.

18.
Cancers (Basel) ; 12(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110946

RESUMO

BACKGROUND: Mucosal and acral melanoma respond worse to immune checkpoint inhibitors (ICI) than cutaneous melanoma. MDM2/4 as well as EGFR amplifications are supposed to be associated with hyperprogression on ICI in diverse cancers. We therefore investigated the response of metastatic acral and mucosal melanoma to ICI in regard to MDM2/4 or EGFR amplifications and melanoma type. METHODS: We conducted a query of our melanoma registry, looking for patients with metastatic acral or mucosal melanoma treated by ICI. Whole exome sequencing, FISH and immunohistochemistry on melanoma tissue could be performed on 45 of the total cohort of 51 patients. Data were correlated with patients` responses to ICI and survival. RESULTS: 22 out of 51 patients had hyperprogressive disease (an increase in tumor load of >50% at the first staging). Hyperprogression occurred more often in case of MDM2/4 or EGFR amplification or <1% PD-L1 positive tumor cells. Nevertheless, this association was not significant. Interestingly, the anorectal melanoma type and the presence of liver metastases were significantly associated with worse survival. CONCLUSIONS: So far, we found no reliable predictive marker for patients who develop hyperprogression on ICI, specifically with regard to MDM2/4 or EGFR amplifications. Nevertheless, patients with anorectal melanoma, liver metastases or melanoma with amplified MYC seem to have an increased risk of not benefitting from ICI.

19.
J Mol Neurosci ; 70(7): 999-1008, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32112337

RESUMO

Mutations in THAP1 (THAP domain-containing apoptosis-associated protein 1) are responsible for DYT6 dystonia. Until now, more than eighty different mutations in THAP1 gene have been found in patients with primary dystonia, and two third of them are missense mutations. The potential pathogeneses of these missense mutations in human are largely elusive. In the present study, we generated stable transfected human neuronal cell lines expressing wild-type or mutated THAP1 proteins found in DYT6 patients. Transcriptional profiling using microarrays revealed a set of 28 common genes dysregulated in two mutated THAP1 (S21T and F81L) overexpression cell lines suggesting a common mechanism of these mutations. ChIP-seq showed that THAP1 can bind to the promoter of one of these genes, superoxide dismutase 2 (SOD2). Overexpression of THAP1 in SK-N-AS cells resulted in increased SOD2 protein expression, whereas fibroblasts from THAP1 patients have less SOD2 expression, which indicates that SOD2 is a direct target gene of THAP1. In addition, we show that some THAP1 mutations (C54Y and F81L) decrease the protein stability which might also be responsible for altered transcription regulation due to dosage insufficiency. Taking together, the current study showed different potential pathogenic mechanisms of THAP1 mutations which lead to the same consequence of DYT6 dystonia.

20.
Aging (Albany NY) ; 12(6): 4742-4756, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32205469

RESUMO

Machado-Joseph disease (MJD/SCA3) is the most common form of dominantly inherited ataxia worldwide. The disorder is caused by an expanded CAG repeat in the ATXN3 gene. Past studies have revealed that the length of the expansion partly explains the disease age at onset (AO) variability of MJD, which is confirmed in this study (Pearson's correlation coefficient R2 = 0.62). Using a total of 786 MJD patients from five different geographical origins, a genome-wide association study (GWAS) was conducted to identify additional AO modifying factors that could explain some of the residual AO variability. We identified nine suggestively associated loci (P < 1 × 10-5). These loci were enriched for genes involved in vesicle transport, olfactory signaling, and synaptic pathways. Furthermore, associations between AO and the TRIM29 and RAG genes suggests that DNA repair mechanisms might be implicated in MJD pathogenesis. Our study demonstrates the existence of several additional genetic factors, along with CAG expansion, that may lead to a better understanding of the genotype-phenotype correlation in MJD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...