Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Alzheimers Dement (Amst) ; 13(1): e12227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568539


Introduction: We report the routine application of magnetoencephalography (MEG) in a memory clinic, and its value in the discrimination of patients with Alzheimer's disease (AD) dementia from controls. Methods: Three hundred sixty-six patients visiting our memory clinic underwent MEG recording. Source-reconstructed MEG data were visually assessed and evaluated in the context of clinical findings and other diagnostic markers. We analyzed the diagnostic accuracy of MEG spectral measures in the discrimination of individual AD dementia patients (n = 40) from subjective cognitive decline (SCD) patients (n = 40) using random forest models. Results: Best discrimination was obtained using a combination of relative theta and delta power (accuracy 0.846, sensitivity 0.855, specificity 0.837). The results were validated in an independent cohort. Hippocampal and thalamic regions, besides temporal-occipital lobes, contributed considerably to the model. Discussion: MEG has been implemented successfully in the workup of memory clinic patients and has value in diagnostic decision-making.

PLoS Biol ; 14(3): e1002420, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27015604


Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

Córtex Visual/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Adulto , Animais , Atenção/fisiologia , Feminino , Humanos , Macaca , Imageamento por Ressonância Magnética
Open Neuroimag J ; 4: 93-9, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21347203


To study the topographical organization of mu and beta band event-related desynchronization (ERD) associated with voluntary hand and foot movements, we used magnetoencephalographic (MEG) recordings from 19 patients with perirolandic lesions. Synthetic aperture magnetometry (SAM) was used to detect and localize changes in the mu (7 - 11 Hz) and beta (13 - 30 Hz) frequency bands associated with repetitive movements of the hand and foot and overlaid on individual coregistered magnetic resonance (MR) images. Hand movements showed homotopic and contralateral ERD at the sensorimotor (S/M) cortex in the majority of cases for mu and to a lesser extent for beta rhythms. Foot movements showed an increased heterotopic distribution with bilateral and ipsilateral ERD compared to hand movements. No systematic topographical segregation between mu and beta ERD could be observed. In patients with perirolandic lesions, the mu and beta band spatial characteristics associated with hand movements retain the expected functional-anatomical boundaries to a large extent. Foot movements have altered patterns of mu and beta band ERD, which may give more insight into the differential functional role of oscillatory activity in different voluntary movements.

Neurosurgery ; 61(6): 1209-17; discussion 1217-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18162900


OBJECTIVE: To study interhemispheric differences of somatosensory evoked field (SEF) characteristics and the spatial distribution of equivalent current dipole sources in patients with unilateral hemispheric lesions around the central sulcus region. METHODS: In 17 patients with perirolandic lesions, averaged somatosensory responses after posterior tibial nerve stimulation at the ankle were recorded with magnetoencephalography. Dipole source solutions in the affected (AH) and unaffected (UH) hemispheres were analyzed and compared for latency, equivalent current dipole strength, root mean square, and spatial distribution in relation to clinical findings. RESULTS: Three main SEF components, P45m, N60m, and P75m, were identified in the hemisphere contralateral to the stimulated nerve. Dipole strength for the P45m component was significantly higher in the AH compared with the UH. SEF characteristics in the AH and UH showed no significant differences with respect to component latency or dipole strength of the N60m and P75m components. Interdipole location asymmetries exceeded 1.0 cm in 71% of the patients. Comparison of the posterior tibial nerve evoked responses (P45m and N60m) in patients with motor deficits and patients without deficits showed that these responses are enlarged in the AH when perirolandic lesions are present. Patients with motor deficits also showed an increased response for P45m in the UH. CONCLUSION: The results of posterior tibial nerve SEFs suggest spatial and functional changes in the somatosensory network as a result of perirolandic lesions with a possible relationship with clinical symptoms. The results can provide further basis for the evaluation of cortical changes in the presence of perirolandic lesions.

Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Córtex Cerebral/patologia , Potenciais Somatossensoriais Evocados/fisiologia , Magnetoencefalografia , Nervo Tibial/fisiopatologia , Adulto , Idoso , Mapeamento Encefálico , Estimulação Elétrica/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/efeitos da radiação