Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834050

RESUMO

Bio-based ionic liquids (ILs) are being increasingly sought after, as they are more sustainable and eco-friendly. Purines are the most widely distributed, naturally occurring N-heterocycles, but their low water-solubility limits their application. In this work, four purines (theobromine, theophylline, xanthine, and uric acid) were combined with the cation tetrabutylammonium to synthesize bio-based ILs. The physico-chemical properties of the purine-based ILs were characterized, including their melting and decomposition temperatures and water-solubility. The ecotoxicity against the microalgae Raphidocelis subcapitata was also determined. The ILs show good thermal stability (>457 K) and an aqueous solubility enhancement ranging from 53- to 870-fold, in comparison to their respective purine percursors, unlocking new prospects for their application where aqueous solutions are demanded. The ecotoxicity of these ILs seems to be dominated by the cation, and it is similar to chloride-based IL, emphasizing that the use of natural anions does not necessarily translate to more benign ILs. The application of the novel ILs in the formation of aqueous biphasic systems (ABS), and as solubility enhancers, was also evaluated. The ILs were able to form ABS with sodium sulfate and tripotassium citrate salts. The development of thermoresponsive ABS, using sodium sulfate as a salting-out agent, was accomplished, with the ILs having different thermosensitivities. In addition, the purine-based ILs acted as solubility enhancers of ferulic acid in aqueous solution.


Assuntos
Líquidos Iônicos/síntese química , Purinas/síntese química , Líquidos Iônicos/química , Líquidos Iônicos/toxicidade , Microalgas/efeitos dos fármacos , Purinas/química , Purinas/toxicidade , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/toxicidade , Solubilidade , Temperatura
2.
Inorg Chem ; 56(16): 10099-10106, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28796492

RESUMO

The potential application of high capacity Sn-based electrode materials for energy storage, particularly in rechargeable batteries, has led to extensive research activities. In this scope, the development of an innovative synthesis route allowing to downsize particles to the nanoscale is of particular interest owing to the ability of such nanomaterial to better accommodate volume changes upon electrochemical reactions. Here, we report on the use of room temperature ionic liquid (i.e., [EMIm+][TFSI-]) as solvent, template, and stabilizer for Sn-based nanoparticles. In such a media, we observed, using Cryo-TEM, that pure Sn nanoparticles can be stabilized. Further washing steps are, however, mandatory to remove residual ionic liquid. It is shown that the washing steps are accompanied by the partial oxidation of the surface, leading to a core-shell structured Sn/SnOx composite. To understand the structural features of such a complex architecture, HRTEM, Mössbauer spectroscopy, and the pair distribution function were employed to reveal a crystallized ß-Sn core and a SnO and SnO2 amorphous shell. The proportion of oxidized phases increases with the final washing step with water, which appeared necessary to remove not only salts but also the final surface impurities made of the cationic moieties of the ionic liquid. This work highlights the strong oxidation reactivity of Sn-based nanoparticles, which needs to be taken into account when evaluating their electrochemical properties.

3.
Dalton Trans ; 43(48): 18025-34, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25352309

RESUMO

The aim of this work was to investigate the synthesis of tin nanoparticles (NPs) or tin/carbon composites, in room temperature ionic liquids (RTILs), that could be used as structured anode materials for Li-ion batteries. An innovative route for the synthesis of Sn nanoparticles in such media is successfully developed. Compositions, structures, sizes and morphologies of NPs were characterized by high-energy X-ray diffraction (HEXRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). Our findings indicated that (i) metallic tetragonal ß-Sn was obtained and (ii) the particle size could be tailored by tuning the nature of the RTILs, leading to nano-sized spherical particles with a diameter ranging from 3 to 10 nm depending on synthesis conditions. In order to investigate carbon composite materials for Li-ion batteries, Sn nanoparticles were successfully deposited on the surface of multi-wall carbon nanotubes (MWCNT). Moreover, electrochemical properties have been studied in relation to a structural study of the nanocomposites. The poor electrochemical performances as a negative electrode in Li-ion batteries is due to a significant amount of RTIL trapped within the pores of the nanotubes as revealed by XPS investigations. This dramatically affected the gravimetric capacity of the composites and limited the diffusion of lithium. The findings of this work however offer valuable insights into the exciting possibilities for synthesis of novel nano-sized particles and/or alloys (e.g. Sn-Cu, Sn-Co, Sn-Ni, etc.) and the importance of carbon morphology in metal pulverization during the alloying/dealloying process as well as prevention of ionic liquid trapping.

4.
J Phys Chem B ; 113(4): 1085-99, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19128051

RESUMO

Several earlier studies of the electrochemical oxidation of ferrocene (Fc) in room-temperature ionic liquids revealed an essentially nonlinear dependence of the oxidation current on the Fc concentration in its relatively dilute solutions, with its formally calculated diffusion coefficient strongly increasing with the concentration. Since no plausible mechanism leading to this very unusual finding had been proposed, our study of Fc solutions in 1-butyl-3-methylimidazolium triflimide, [BMIM][NTf(2)], was performed to verify whether the above observation originated from an incorrect determination of the dissolved Fc concentration. Our observations have demonstrated that reliable control of the Fc concentration in solution is complicated by factors such as the low amount of Fc used to prepare small-volume solutions or the great difficulty to dissolve completely a solid powder in a solvent with an extremely high viscosity. An unexpected additional complication is related to a sufficiently high volatility of Fc which manifests itself even at room temperature and especially at elevated temperatures or/and in the course of vacuum treatment of its solutions or its solid powder. Parallel measurements of electrochemical responses and UV-visible spectra for several series of Fc solutions of various concentrations (prepared with the use of different procedures) have shown a perfect parallelism between the peak current and the intensity of the absorption band in the range of 360-550 nm, leading us to the conclusion of a linear relationship between the oxidation current and the molecularly dissolved Fc concentration. The relations of these measured characteristics with the estimated Fc concentration in these solutions have demonstrated a much greater dispersion (attributed to the difficulty of a precise measurement of the latter) but without a significant deviation from the linearity in general. This finding has allowed us to estimate the diffusion coefficient of this species: D = (1.7 +/- 0.2) x 10(-7) cm(2)/s. The extinction coefficients for the maximum of the absorption band (at 440 nm) of Fc have been compared for a series of solvents: [BMIM][NTf(2)], acetonitrile, THF, heptane, CH(2)Cl(2), ethanol, and toluene. A simple method to estimate reliably the concentration of solute Fc in ionic liquids based on spectroscopic measurements has been proposed, owing to the proximity of Fc absorption properties for a great variety of solvents.

5.
Langmuir ; 25(3): 1311-5, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19125689

RESUMO

A new redox amphiphilic ionic liquid (AIL) containing ferrocene as a redox-active group was synthesized, 1-(11-ferrocenylundecyl)-3-methylimidazolium bromide (Fc11MIm+). Adsorption and aggregation of both reduced and oxidized forms of this ferrocenated AIL in aqueous solution were studied by surface tension measurements. The micellization was favored for the reduced ferrocenated AIL (Fc11MIm+) as compared with the oxidized ferrocenated AIL (Fc+11MIm+). Minimum areas at the air/aqueous solution interface were identical whereas limiting surface tensions were slightly different. This corroborated the formation of an expanded monolayer of redox active AIL at the interface. The electrochemical behavior of redox active AIL was investigated. The electrochemical responses of Fc11MIm+ aqueous solution interestingly differed, depending on its concentration. Below the cmc, the electrochemical reaction was dominated by ferrocenated AIL adsorbed onto the electrode surface; then above the cmc, it was controlled by the Fc11MIm+ diffusing to the electrode. For the latter, the electrochemical mechanism was suggested to couple with the disruption reaction of the reduced form micelles.

6.
Free Radic Biol Med ; 35(12): 1608-18, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14680684

RESUMO

The use of triarylmethyl (trityl) free radical, TAM OX063, for detection of superoxide in aqueous solutions by electron paramagnetic resonance (EPR) spectroscopy was investigated. TAM is paramagnetic (EPR active), highly soluble in water and exhibits a single sharp EPR peak in aqueous media. It is also highly stable in presence of many oxidoreductants such as ascorbate and glutathione that are present in the biological systems. TAM reacts with superoxide with an apparent second order rate constant of 3.1 x 10(3) M(-1) s(-1). The specific reactivity of TAM with superoxide, which leads to loss of EPR signal, was utilized to detect the generation of superoxide in various chemical (light/riboflavin/electron/donor), enzymatic (xanthine/xanthine oxidase), and cellular (stimulated neutrophils) model systems. The changes in the EPR line-width, induced by molecular oxygen, were utilized in the simultaneous determination of consumption of oxygen in the model systems. The effects of flux of superoxide and concentration of TAM on the efficiency of detection of superoxide were studied. The use of TAM for detection of superoxide offers unique advantages namely, (i) the utilization of very low concentration of the probe, (ii) its stability to bioreduction, and (iii) its use in the simultaneous determination of concentrations of superoxide and oxygen.


Assuntos
Superóxidos/análise , Trítio/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Concentração de Íons de Hidrogênio , Cinética , Sondas Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...