Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Sci Rep ; 10(1): 2191, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042056

RESUMO

Autophagy is an evolutionarily conserved process that plays a key role in the maintenance of overall cellular health. While it has been suggested that autophagy may elicit cardioprotective and pro-survival modulating functions, excessive activation of autophagy can also be detrimental. In this regard, the zebrafish is considered a hallmark model for vertebrate regeneration, since contrary to adult mammals, it is able to faithfully regenerate cardiac tissue. Interestingly, the role that autophagy may play in zebrafish heart regeneration has not been studied yet. In the present work, we hypothesize that, in the context of a well-established injury model of ventricular apex resection, autophagy plays a critical role during cardiac regeneration and its regulation can directly affect the zebrafish regenerative potential. We studied the autophagy events occurring upon injury using electron microscopy, in vivo tracking of autophagy markers, and protein analysis. Additionally, using pharmacological tools, we investigated how rapamycin, an inducer of autophagy, affects regeneration relevant processes. Our results show that a tightly regulated autophagic response is triggered upon injury and during the early stages of the regeneration process. Furthermore, treatment with rapamycin caused an impairment in the cardiac regeneration outcome. These findings are reminiscent of the pathophysiological description of an injured human heart and hence put forward the zebrafish as a model to study the poorly understood double-sword effect that autophagy has in cardiac homeostasis.

3.
Thyroid ; 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31910118

RESUMO

Background: Although most thyroid nodules with indeterminate cytology are benign, in most of the world, surgery remains as the most frequent diagnostic approach. We have previously reported a 10-gene thyroid genetic classifier, which accurately predicts benign thyroid nodules. The assay is a prototype diagnostic kit suitable for reference laboratory testing and could potentially avoid unnecessary diagnostic surgery in patients with indeterminate thyroid cytology. Methods: Classifier performance was tested in two independent, ethnically diverse, prospective multicenter trials (TGCT-1/Chile and TGCT-2/USA). A total of 4061 fine-needle aspirations were collected from 15 institutions, of which 897 (22%) were called indeterminate. The clinical site was blind to the classifier score and the clinical laboratory blind to the pathology report. A matched surgical pathology and valid classifier score was available for 270 samples. Results: Cohorts showed significant differences, including (i) clinical site patient source (academic, 43% and 97% for TGCT-1 and -2, respectively); (ii) ethnic diversity, with a greater proportion of the Hispanic population (40% vs. 3%) for TGCT-1 and a greater proportion of African American (11% vs. 0%) and Asian (10% vs. 1%) populations for TGCT-2; and (iii) tumor size (mean of 1.7 and 2.5 cm for TGCT-1 and -2, respectively). Overall, there were no differences in the histopathological profile between cohorts. Forty-one of 155 and 45 of 115 nodules were malignant (cancer prevalence of 26% and 39% for TGCT-1 and -2, respectively). The classifier predicted 37 of 41 and 41 of 45 malignant nodules, yielding a sensitivity of 90% [95% confidence interval; CI 77-97] and 91% [95% CI 79-98] for TGCT-1 and -2, respectively. One hundred one of 114 and 61 of 70 nodules were correctly predicted as benign, yielding a specificity of 89% [95% CI 82-94] and 87% [95% CI 77-94], respectively. The negative predictive values for TGCT-1 and TGCT-2 were 96% and 94%, respectively, whereas the positive predictive values were 74% and 82%, respectively. The overall accuracy for both cohorts was 89%. Conclusions: Clinical validation of the classifier demonstrates equivalent performance in two independent and ethnically diverse cohorts, accurately predicting benign thyroid nodules that can undergo surveillance as an alternative to diagnostic surgery.

5.
Front Immunol ; 10: 1394, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281317

RESUMO

In colorectal cancer (CRC), cancer-associated fibroblasts (CAFs) are the most abundant component from the tumor microenvironment (TM). CAFs facilitate tumor progression by inducing angiogenesis, immune suppression and invasion, thus altering the organization/composition of the extracellular matrix (i.e., desmoplasia) and/or activating epithelial-mesenchymal transition (EMT). Soluble factors from the TM can also contribute to cell invasion through secretion of cytokines and recently, IL-33/ST2 pathway has gained huge interest as a protumor alarmin, promoting progression to metastasis by inducing changes in TM. Hence, we analyzed IL-33 and ST2 content in tumor and healthy tissue lysates and plasma from CRC patients. Tissue localization and distribution of these molecules was evaluated by immunohistochemistry (using localization reference markers α-smooth muscle actin or α-SMA and E-cadherin), and clinical/histopathological information was obtained from CRC patients. In vitro experiments were conducted in primary cultures of CAFs and normal fibroblasts (NFs) isolated from tumor and healthy tissue taken from CRC patients. Additionally, migration and proliferation analysis were performed in HT29 and HCT116 cell lines. It was found that IL-33 content increases in left-sided CRC patients with lymphatic metastasis, with localization in tumor epithelia associated with abundant desmoplasia. Although ST2 content showed similarities between tumor and healthy tissue, a decreased immunoreactivity was observed in left-sided tumor stroma, associated to metastasis related factors (advanced stages, abundant desmoplasia, and presence of tumor budding). A principal component analysis (including stromal and epithelial IL-33/ST2 and α-SMA immunoreactivity with extent of desmoplasia) allowed us to distinguish clusters of low, intermediate and abundant desmoplasia, with potential to develop a diagnostic signature with benefits for further therapeutic targets. IL-33 transcript levels from CAFs directly correlated with CRC cell line migration induced by CAFs conditioned media, with rhIL-33 inducing a mesenchymal phenotype in HT29 cells. These results indicate a role of IL-33/ST2 in tumor microenvironment, specifically in the interaction between CAFs and epithelial tumor cells, thus contributing to invasion and metastasis in left-sided CRC, most likely by activating desmoplasia.

6.
Biol Res ; 52(1): 13, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30894224

RESUMO

BACKGROUND: Ovarian cancer is a significant cancer-related cause of death in women worldwide. The most used chemotherapeutic regimen is based on carboplatin (CBDCA). However, CBDCA resistance is the main obstacle to a better prognosis. An in vitro drug-resistant cell model would help in the understanding of molecular mechanisms underlying this drug-resistance phenomenon. The aim of this study was to characterize cellular and molecular changes of induced CBDCA-resistant ovarian cancer cell line A2780. METHODS: The cell selection strategy used in this study was a dose-per-pulse method using a concentration of 100 µM for 2 h. Once 20 cycles of exposure to the drug were completed, the cell cultures showed a resistant phenotype. Then, the ovarian cancer cell line A2780 was grown with 100 µM of CBDCA (CBDCA-resistant cells) or without CBDCA (parental cells). After, a drug sensitivity assay, morphological analyses, cell death assays and a RNA-seq analysis were performed in CBDCA-resistant A2780 cells. RESULTS: Microscopy on both parental and CBDCA-resistant A2780 cells showed similar characteristics in morphology and F-actin distribution within cells. In cell-death assays, parental A2780 cells showed a significant increase in phosphatidylserine translocation and caspase-3/7 cleavage compared to CBDCA-resistant A2780 cells (P < 0.05 and P < 0.005, respectively). Cell viability in parental A2780 cells was significantly decreased compared to CBDCA-resistant A2780 cells (P < 0.0005). The RNA-seq analysis showed 156 differentially expressed genes (DEGs) associated mainly to molecular functions. CONCLUSION: CBDCA-resistant A2780 ovarian cancer cells is a reliable model of CBDCA resistance that shows several DEGs involved in molecular functions such as transmembrane activity, protein binding to cell surface receptor and catalytic activity. Also, we found that the Wnt/ß-catenin and integrin signaling pathway are the main metabolic pathway dysregulated in CBDCA-resistant A2780 cells.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Ovarianas/genética , Transcriptoma/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fenótipo , Análise de Sequência de RNA , Transdução de Sinais , Transcriptoma/genética
7.
Circulation ; 139(20): 2342-2357, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30818997

RESUMO

BACKGROUND: The primary cilium is a singular cellular structure that extends from the surface of many cell types and plays crucial roles in vertebrate development, including that of the heart. Whereas ciliated cells have been described in developing heart, a role for primary cilia in adult heart has not been reported. This, coupled with the fact that mutations in genes coding for multiple ciliary proteins underlie polycystic kidney disease, a disorder with numerous cardiovascular manifestations, prompted us to identify cells in adult heart harboring a primary cilium and to determine whether primary cilia play a role in disease-related remodeling. METHODS: Histological analysis of cardiac tissues from C57BL/6 mouse embryos, neonatal mice, and adult mice was performed to evaluate for primary cilia. Three injury models (apical resection, ischemia/reperfusion, and myocardial infarction) were used to identify the location and cell type of ciliated cells with the use of antibodies specific for cilia (acetylated tubulin, γ-tubulin, polycystin [PC] 1, PC2, and KIF3A), fibroblasts (vimentin, α-smooth muscle actin, and fibroblast-specific protein-1), and cardiomyocytes (α-actinin and troponin I). A similar approach was used to assess for primary cilia in infarcted human myocardial tissue. We studied mice silenced exclusively in myofibroblasts for PC1 and evaluated the role of PC1 in fibrogenesis in adult rat fibroblasts and myofibroblasts. RESULTS: We identified primary cilia in mouse, rat, and human heart, specifically and exclusively in cardiac fibroblasts. Ciliated fibroblasts are enriched in areas of myocardial injury. Transforming growth factor ß-1 signaling and SMAD3 activation were impaired in fibroblasts depleted of the primary cilium. Extracellular matrix protein levels and contractile function were also impaired. In vivo, depletion of PC1 in activated fibroblasts after myocardial infarction impaired the remodeling response. CONCLUSIONS: Fibroblasts in the neonatal and adult heart harbor a primary cilium. This organelle and its requisite signaling protein, PC1, are required for critical elements of fibrogenesis, including transforming growth factor ß-1-SMAD3 activation, production of extracellular matrix proteins, and cell contractility. Together, these findings point to a pivotal role of this organelle, and PC1, in disease-related pathological cardiac remodeling and suggest that some of the cardiovascular manifestations of autosomal dominant polycystic kidney disease derive directly from myocardium-autonomous abnormalities.

8.
J Cell Commun Signal ; 13(2): 163-177, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30666556

RESUMO

Gallbladder cancer (GBC) is a rare malignancy, associated with poor disease prognosis with a 5-year survival of only 20%. This has been attributed to late presentation of the disease, lack of early diagnostic markers and limited efficacy of therapeutic interventions. Elucidation of molecular events in GBC can contribute to better management of the disease by aiding in the identification of therapeutic targets. To identify aberrantly activated signaling events in GBC, tandem mass tag-based quantitative phosphoproteomic analysis of five GBC cell lines was carried out. Proline-rich Akt substrate 40 kDa (PRAS40) was one of the proteins found to be hyperphosphorylated in all the invasive GBC cell lines. Tissue microarray-based immunohistochemical labeling of phospho-PRAS40 (T246) revealed moderate to strong staining in 77% of the primary gallbladder adenocarcinoma cases. Regulation of PRAS40 activity by inhibiting its upstream kinase PIM1 resulted in a significant decrease in cell proliferation, colony forming and invasive ability of GBC cells. Our results support the role of PRAS40 phosphorylation in GBC cell survival and aggressiveness. This study also elucidates phospho-PRAS40 as a clinical marker in GBC and the role of PIM1 as a therapeutic target in GBC.

9.
Sci Rep ; 9(1): 772, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692554

RESUMO

Latin Americans and Chilean Amerindians have the highest prevalence of gallstone disease (GSD) and gallbladder cancer (GBC) in the world. A handful of loci have been associated with GSD in populations of predominantly European ancestry, however, they only explain a small portion of the genetic component of the disease. Here, we performed a genome-wide association study (GWAS) for GSD in 1,095 admixed Chilean Latinos with Mapuche Native American ancestry. Disease status was assessed by cholecystectomy or abdominal ultrasonography. Top-10 candidate variants surpassing the suggestive cutoff of P < 1 × 10-5 in the discovery cohort were genotyped in an independent replication sample composed of 1,643 individuals. Variants with positive replication were further examined in two European GSD populations and a Chilean GBC cohort. We consistently replicated the association of ABCG8 gene with GSD (rs11887534, P = 3.24 × 10-8, OR = 1.74) and identified TRAF3 (rs12882491, P = 1.11 × 10-7, OR = 1.40) as a novel candidate gene for the disease in admixed Chilean Latinos. ABCG8 and TRAF3 variants also conferred risk to GBC. Gene expression analyses indicated that TRAF3 was significantly decreased in gallbladder (P = 0.015) and duodenal mucosa (P = 0.001) of GSD individuals compared to healthy controls, where according to GTEx data in the small intestine, the presence of the risk allele contributes to the observed effect. We conclude that ABCG8 and TRAF3 genes are associated with GSD and GBC in admixed Latinos and that decreased TRAF3 levels could enhance gallbladder inflammation as is observed in GSD and GSD-associated GBC.

10.
Mol Cell Proteomics ; 18(2): 352-371, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30455363

RESUMO

Helicobacter pylori is the strongest risk factor for gastric cancer. Initial interactions between H. pylori and its host originate at the microbial-gastric epithelial cell interface, and contact between H. pylori and gastric epithelium activates signaling pathways that drive oncogenesis. One microbial constituent that increases gastric cancer risk is the cag pathogenicity island, which encodes a type IV secretion system that translocates the effector protein, CagA, into host cells. We previously demonstrated that infection of Mongolian gerbils with a carcinogenic cag + H. pylori strain, 7.13, recapitulates many features of H. pylori-induced gastric cancer in humans. Therefore, we sought to define gastric proteomic changes induced by H. pylori that are critical for initiation of the gastric carcinogenic cascade. Gastric cell scrapings were harvested from H. pylori-infected and uninfected gerbils for quantitative proteomic analyses using isobaric tags for relative and absolute quantitation (iTRAQ). Quantitative proteomic analysis of samples from two biological replicate experiments quantified a total of 2764 proteins, 166 of which were significantly altered in abundance by H. pylori infection. Pathway mapping identified significantly altered inflammatory and cancer-signaling pathways that included Rab/Ras signaling proteins. Consistent with the iTRAQ results, RABEP2 and G3BP2 were significantly up-regulated in vitro, ex vivo in primary human gastric monolayers, and in vivo in gerbil gastric epithelium following infection with H. pylori strain 7.13 in a cag-dependent manner. Within human stomachs, RABEP2 and G3BP2 expression in gastric epithelium increased in parallel with the severity of premalignant and malignant lesions and was significantly elevated in intestinal metaplasia and dysplasia, as well as gastric adenocarcinoma, compared with gastritis alone. These results indicate that carcinogenic strains of H. pylori induce dramatic and specific changes within the gastric proteome in vivo and that a subset of altered proteins within pathways with oncogenic potential may facilitate the progression of gastric carcinogenesis in humans.


Assuntos
Proteínas de Transporte/metabolismo , Infecções por Helicobacter/complicações , Helicobacter pylori/patogenicidade , Neoplasias Gástricas/microbiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Gerbillinae , Infecções por Helicobacter/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Mapas de Interação de Proteínas , Proteômica , Neoplasias Gástricas/metabolismo , Regulação para Cima
11.
Histopathology ; 74(4): 597-607, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30565710

RESUMO

AIMS: Gallbladder cancer (GBC) is an aggressive tumour that is usually diagnosed at advanced stages and is characterised by a poor prognosis. Using public data of normal human tissues, we found that mRNA and protein levels of mucin 5B (MUC5B) and carbonic anhydrase 9 (CA9) were highly increased in gallbladder tissues. In addition, previous evidence has shown that claudin 18 (CLDN18) protein expression is higher in GBC. The aim of this study was to perform an analysis of these cell surface proteins during the histological progression of GBC in order to identify their theranostic potential. METHODS AND RESULTS: MUC5B expression, CA9 expression and CLDN18 expression were examined by immunohistochemistry in a series of 179 chronic cholecystitis (including 16 metaplastic tissues), 15 dysplasia and 217 GBC samples by the use of tissue microarray analysis. A composite staining score was calculated from staining intensity and percentage of positive cells. Immunohistochemical analysis showed high expression of MUC5B and CA9 among normal epithelium, metaplastic tissues, and dysplastic tissues. However, expression of both proteins was observed in roughly 50% of GBC samples. In contrast, CLDN18 was absent in normal epithelium, but its expression was higher in metaplastic cells. Among GBC cases, approximately half showed high CLDN18 expression. No associations were found between MUC5B, CA9 and CLDN18 expression and any clinicopathological features. CONCLUSIONS: CLDN18 is a new metaplasia marker in gallbladder tissues, and is conserved in approximately half of GBC cases. MUC5B and CA9 are highly conserved during GBC histological progression. The three markers are potential theranostic markers, in particular CA9 and CLDN18, for which there are already targeted therapies available.


Assuntos
Antígenos de Neoplasias/biossíntese , Biomarcadores Tumorais/análise , Anidrase Carbônica IX/biossíntese , Claudinas/biossíntese , Neoplasias da Vesícula Biliar/patologia , Mucina-5B/biossíntese , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanomedicina Teranóstica/métodos
12.
Biol. Res ; 52: 13, 2019. graf
Artigo em Inglês | LILACS-Express | ID: biblio-1011415

RESUMO

Abstract Background: Ovarian cancer is a significant cancer-related cause of death in women worldwide. The most used chemotherapeutic regimen is based on carboplatin (CBDCA). However, CBDCA resistance is the main obstacle to a better prognosis. An in vitro drug-resistant cell model would help in the understanding of molecular mechanisms underlying this drug-resistance phenomenon. The aim of this study was to characterize cellular and molecular changes of induced CBDCA-resistant ovarian cancer cell line A2780. Methods: The cell selection strategy used in this study was a dose-per-pulse method using a concentration of 100 μM for 2 h. Once 20 cycles of exposure to the drug were completed, the cell cultures showed a resistant phenotype. Then, the ovarian cancer cell line A2780 was grown with 100 μM of CBDCA (CBDCA-resistant cells) or without CBDCA (parental cells). After, a drug sensitivity assay, morphological analyses, cell death assays and a RNA-seq analysis were performed in CBDCA-resistant A2780 cells. Results: Microscopy on both parental and CBDCA-resistant A2780 cells showed similar characteristics in morphology and F-actin distribution within cells. In cell-death assays, parental A2780 cells showed a significant increase in phosphatidylserine translocation and caspase-3/7 cleavage compared to CBDCA-resistant A2780 cells (P < 0.05 and P < 0.005, respectively). Cell viability in parental A2780 cells was significantly decreased compared to CBDCA-resistant A2780 cells (P < 0.0005). The RNA-seq analysis showed 156 differentially expressed genes (DEGs) associated mainly to molecular functions. Conclusion: CBDCA-resistant A2780 ovarian cancer cells is a reliable model of CBDCA resistance that shows several DEGs involved in molecular functions such as transmembrane activity, protein binding to cell surface receptor and catalytic activity. Also, we found that the Wnt/3-catenin and integrin signaling pathway are the main metabolic pathway dysregulated in CBDCA-resistant A2780 cells.

13.
J Hepatobiliary Pancreat Sci ; 25(12): 533-543, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30562839

RESUMO

BACKGROUND: There is no consensus on the optimal treatment of T1b gallbladder cancer (GBC) due to the lack of evidence and the difficulty of anatomy and pathological standardization. METHODS: A total of 272 patients with T1b GBC who underwent surgical resection at 14 centers with specialized hepatobiliary-pancreatic surgeons and pathologists in Korea, Japan, Chile, and the United States were studied. Clinical outcomes including disease-specific survival (DSS) rates according to the types of surgery were analyzed. RESULTS: After excluding patients, the 237 qualifying patients consisted of 90 men and 147 women. Simple cholecystectomy (SC) was performed in 116 patients (48.9%) and extended cholecystectomy (EC) in 121 patients (51.1%). The overall 5-year DSS was 94.6%, and it was similar between SC and EC patients (93.7% vs. 95.5%, P = 0.496). The 5-year DSS was similar between SC and EC patients in America (82.3% vs. 100.0%, P = 0.249) as well as in Asia (98.6% vs. 95.2%, P = 0.690). The 5-year DSS also did not differ according to lymph node metastasis (P = 0.688) or tumor location (P = 0.474). CONCLUSIONS: SC showed similar clinical outcomes (including recurrence) and survival outcomes as EC; therefore, EC is not needed for the treatment of T1b GBC.


Assuntos
Colecistectomia/métodos , Neoplasias da Vesícula Biliar/cirurgia , Adulto , Idoso , Feminino , Neoplasias da Vesícula Biliar/patologia , Hepatectomia/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudos Retrospectivos
14.
Tumour Biol ; 40(11): 1010428318810059, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30419802

RESUMO

A complex network of chemokines can influence cancer progression with the recruitment and activation of hematopoietic cells, including macrophages to the supporting tumor stroma promoting carcinogenesis and metastasis. The aim of this study was to investigate the relation between tissue and plasma chemokine levels involved in macrophage recruitment with tumor-associated macrophage profile markers and clinicopathological features such as tumor-node-metastases stage, desmoplasia, tumor necrosis factor-α, and vascular endothelial growth factor plasma content. Plasma and tumor/healthy mucosa were obtained from Chilean patients undergoing colon cancer surgery. Chemokines were evaluated from tissue lysates (CCL2, CCL3, CCL4, CCL5, and CX3CL1) by Luminex. Statistical analysis was performed using Wilcoxon match-paired test ( p < 0.05). Macrophage markers (CD68, CD163, and iNOS) were evaluated by immunohistochemistry samples derived from colorectal cancer patients. Correlation analysis between chemokines and macrophage markers and clinicopathological features were performed using Spearman's test. Plasmatic levels of chemokines and inflammatory mediators' vascular endothelial growth factor and tumor necrosis factor-α were evaluated by Luminex. Tumor levels of CCL2 (mean ± standard deviation = 530.1 ± 613.9 pg/mg), CCL3 (102.7 ± 106.0 pg/mg), and CCL4 (64.98 ± 48.09 pg/mg) were higher than those found in healthy tissue (182.1 ± 116.5, 26.79 ± 22.40, and 27.06 ± 23.69 pg/mg, respectively p < 0.05). The tumor characterization allowed us to identify a positive correlation between CCL4 and the pro-tumor macrophages marker CD163 ( p = 0.0443), and a negative correlation of iNOS with desmoplastic reaction ( p = 0.0467). Moreover, we identified that tumors with immature desmoplasia have a higher CD163 density compared to those with a mature/intermediated stromal tissue ( p = 0.0288). Plasmatic CCL4 has shown a positive correlation with inflammatory mediators (tumor necrosis factor-α and vascular endothelial growth factor) that have previously been associated with poor prognosis in patients. In conclusion High expression of CCL4 in colon cancer could induce the infiltration of tumor-associated macrophages and specifically a pro-tumor macrophage profile (CD163+ cells). Moreover, plasmatic chemokines could be considered inflammatory mediators associated to CRC progression as well as tumor necrosis factor-α and vascular endothelial growth factor. These data reinforce the idea of chemokines as potential therapeutic targets or biomarker in CRC.


Assuntos
Biomarcadores Tumorais/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Neoplasias Colorretais/patologia , Macrófagos/patologia , Microambiente Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Neoplasias Colorretais/metabolismo , Feminino , Seguimentos , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico
15.
Gynecol Oncol ; 151(1): 10-17, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30078505

RESUMO

BACKGROUND: High-grade serous ovarian cancer (HGSOC) is the most prevalent and aggressive histologic type of ovarian cancer. To date, there are no reliable biomarkers to effectively predict patient prognosis. Studies have demonstrated inflammation and tumor infiltrating lymphocytes (TILs) correlate with a bad and good prognosis, respectively. Here, we sought to evaluate systemic inflammation and TILs as early prognostic markers of survival. METHODS: Neutrophil-to-lymphocyte ratio (NLR) and serum Lactate Dehydrogenase (LDH) were used as indicators of systemic inflammation. NLR, serum LDH, tumor infiltrating lymphocytes (TILs), PDL1 and quality of debulking surgery were evaluated as determinants of progression-free survival (PFS) and overall survival (OS) in a cohort of 128 HGSOC patients. RESULTS: Initial univariate analysis showed that systemic inflammation measures (NLR and serum LDH), debulking surgery, and intra-epithelial TILs have a significant impact on both PFS and OS. After adjustment for several variables, multivariate analyses confirmed intraepithelial CD4+ T-cells, systemic inflammation measures, PDL1 and debulking surgery as determinants of better OS and PFS. CONCLUSIONS: Systemic inflammation and TILs are early determinants of OS in HGSOC. Other variables such as the quality of debulking surgery and PDL1 also improve survival of patients. Regarding TIL sub-populations, intraepithelial CD4+ cells are associated to an increase in both PFS and OS. We also confirmed previous reports that demonstrate intraepithelial CD8+ cells correlate with an increase on PFS in ovarian cancer. A combined score using systemic inflammation and TILs may be of prognostic value for HGSOC patients.


Assuntos
Biomarcadores Tumorais/análise , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Inflamação/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Biópsia , Cistadenocarcinoma Seroso , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Inflamação/sangue , Inflamação/mortalidade , Inflamação/patologia , L-Lactato Desidrogenase/sangue , Contagem de Linfócitos , Pessoa de Meia-Idade , Gradação de Tumores , Neutrófilos/imunologia , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Ovário/patologia , Ovário/cirurgia , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos
16.
Hum Pathol ; 82: 87-94, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30036595

RESUMO

Gallbladder dysplasia can progress to cancer and may be associated with increased cancer risk at other biliary tract sites. Thus, its accurate identification is relevant both for etiologic understanding and for clinical purposes. Data on the frequency and distribution of gallbladder dysplasia are lacking owing to limited gallbladder sampling and inability to visualize dysplasia grossly. An expert pathology group used consensus criteria to review 140 totally sampled consecutive cholecystectomy specimens from Chilean women. Three cases (2%) revealed incidental invasive carcinoma, all T2, along with high-grade dysplasia (HGD). The surface areas covered by dysplasia or cancer in these cases were 9%, 37%, and 87%. Although the first longitudinal ("diagnostic") section of the whole gallbladder captured HGD or cancer in all 3 cases, the deepest focus of invasive carcinoma was not present in this section. Fourteen additional cases (10%) had low-grade dysplasia (LGD), which was typically very focal (covering <5% of the surface) and most often occurred in the fundus. LGD was not present in the diagnostic section of 5 cases (38%) and would have been missed without additional sampling. None of the cancers or dysplasias were grossly visible. Although HGD and carcinoma are likely to be identified in "diagnostic" sections, accurate staging requires total sampling. LGD is typically very focal and would often be missed in routine practice. To identify cancer precursors, additional sampling, particularly of the fundus, may be warranted. The predominance of LGD in the fundus also provides etiologic insight, supporting the contribution of gallstones and chronic inflammation.


Assuntos
Carcinoma/patologia , Neoplasias da Vesícula Biliar/patologia , Vesícula Biliar/patologia , Lesões Pré-Cancerosas/patologia , Adulto , Idoso , Biópsia , Carcinoma/epidemiologia , Carcinoma/cirurgia , Chile/epidemiologia , Colecistectomia , Feminino , Vesícula Biliar/cirurgia , Neoplasias da Vesícula Biliar/epidemiologia , Neoplasias da Vesícula Biliar/cirurgia , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Lesões Pré-Cancerosas/epidemiologia , Lesões Pré-Cancerosas/cirurgia , Valor Preditivo dos Testes , Prevalência , Medição de Risco , Fatores de Risco
17.
Sci Rep ; 8(1): 5671, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618736

RESUMO

Although inflammation is central to gallbladder cancer (GBC) development and proliferation, no study has systematically investigated circulating inflammatory proteins and patient survival. We aimed to examine whether the circulating levels of inflammatory proteins is associated with all-cause mortality among such patients. We recruited 134 patients with newly diagnosed with GBC from 1997 to 2001 in a population-based study in Shanghai and an independent set of 35 patients from 2012 to 2013 in Chile. Cox proportional hazards regression models adjusted for covariates were used to evaluate the hazard ratios (HRs) for death by serum levels of 49 inflammatory proteins (quartiles). Of 49 evaluable proteins, eight were significantly associated with overall survival. Seven were associated with a poorer survival, while the highest levels of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were associated with an increase in survival (HR = 0.26, 95% CI = 0.14, 0.47). No substantial difference in the magnitude of the association was observed between early- and late-stages of GBC. Of seven proteins, five were validated in the patients from Chile. Reducing inflammation and targeting pathways associated with increased survival might improve GBC outcomes. The potential for using a TRAIL-related anticancer drug for GBC treatment merits further investigation.


Assuntos
Biomarcadores Tumorais/sangue , Quimiocinas/sangue , Citocinas/sangue , Neoplasias da Vesícula Biliar/sangue , Neoplasias da Vesícula Biliar/mortalidade , Mediadores da Inflamação/sangue , Idoso , Feminino , Seguimentos , Neoplasias da Vesícula Biliar/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
18.
Cancer Immunol Immunother ; 67(12): 1897-1910, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29600445

RESUMO

Immunotherapy based on checkpoint blockers has proven survival benefits in patients with melanoma and other malignancies. Nevertheless, a significant proportion of treated patients remains refractory, suggesting that in combination with active immunizations, such as cancer vaccines, they could be helpful to improve response rates. During the last decade, we have used dendritic cell (DC) based vaccines where DCs loaded with an allogeneic heat-conditioned melanoma cell lysate were tested in a series of clinical trials. In these studies, 60% of stage IV melanoma DC-treated patients showed immunological responses correlating with improved survival. Further studies showed that an essential part of the clinical efficacy was associated with the use of conditioned lysates. Gallbladder cancer (GBC) is a high-incidence malignancy in South America. Here, we evaluated the feasibility of producing effective DCs using heat-conditioned cell lysates derived from gallbladder cancer cell lines (GBCCL). By characterizing nine different GBCCLs and several fresh tumor tissues, we found that they expressed some tumor-associated antigens such as CEA, MUC-1, CA19-9, Erb2, Survivin, and several carcinoembryonic antigens. Moreover, heat-shock treatment of GBCCLs induced calreticulin translocation and release of HMGB1 and ATP, both known to act as danger signals. Monocytes stimulated with combinations of conditioned lysates exhibited a potent increase of DC-maturation markers. Furthermore, conditioned lysate-matured DCs were capable of strongly inducing CD4+ and CD8+ T cell activation, in both allogeneic and autologous cell co-cultures. Finally, in vitro stimulated CD8+ T cells recognize HLA-matched GBCCLs. In summary, GBC cell lysate-loaded DCs may be considered for future immunotherapy approaches.


Assuntos
Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Neoplasias da Vesícula Biliar/terapia , Animais , Antígenos de Neoplasias/imunologia , Biomarcadores , Vacinas Anticâncer/efeitos adversos , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/imunologia , Neoplasias da Vesícula Biliar/metabolismo , Regulação da Expressão Gênica , Resposta ao Choque Térmico , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
19.
Mol Biol Cell ; 29(5): 557-574, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298841

RESUMO

Epithelial cells can acquire invasive and tumorigenic capabilities through epithelial-mesenchymal-transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective ß1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin-Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by α5ß1integrin binding. Under subconfluent conditions, Gal-8-overexpressing MDCK cells (MDCK-Gal-8H) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased ß-catenin activity. Changes related to migration/invasion included higher expression of α5ß1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8-stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and ß1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8H cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties.


Assuntos
Transição Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Galectinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Animais , Caderinas/metabolismo , Carcinogênese , Cães , Quinase 1 de Adesão Focal/metabolismo , Humanos , Integrina beta1/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Neoplasias Experimentais , Proteínas Recombinantes/metabolismo , Transfecção , Regulação para Cima , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
20.
Sci Rep ; 7(1): 13402, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042597

RESUMO

Cardiac hypertrophy is an adaptive response triggered by pathological stimuli. Regulation of the synthesis and the degradation of the Ca2+ channel inositol 1,4,5-trisphosphate receptor (IP3R) affects progression to cardiac hypertrophy. Herpud1, a component of the endoplasmic reticulum-associated degradation (ERAD) complex, participates in IP3R1 degradation and Ca2+ signaling, but the cardiac function of Herpud1 remains unknown. We hypothesize that Herpud1 acts as a negative regulator of cardiac hypertrophy by regulating IP3R protein levels. Our results show that Herpud1-knockout mice exhibit cardiac hypertrophy and dysfunction and that decreased Herpud1 protein levels lead to elevated levels of hypertrophic markers in cultured rat cardiomyocytes. In addition, IP3R levels were elevated both in Herpud1-knockout mice and Herpud1 siRNA-treated rat cardiomyocytes. The latter treatment also led to elevated cytosolic and nuclear Ca2+ levels. In summary, the absence of Herpud1 generates a pathological hypertrophic phenotype by regulating IP3R protein levels. Herpud1 is a novel negative regulator of pathological cardiac hypertrophy.


Assuntos
Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Cardiomegalia/diagnóstico , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Testes de Função Cardíaca , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteólise , Ratos , Sístole
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA