Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 3(1): 58-70, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29376134

RESUMO

The ability to perform laboratory testing near the patient and with smaller blood volumes would benefit patients and physicians alike. We describe our design of a miniaturized clinical laboratory system with three components: a hardware platform (ie, the miniLab) that performs preanalytical and analytical processing steps using miniaturized sample manipulation and detection modules, an assay-configurable cartridge that provides consumable materials and assay reagents, and a server that communicates bidirectionally with the miniLab to manage assay-specific protocols and analyze, store, and report results (i.e., the virtual analyzer). The miniLab can detect analytes in blood using multiple methods, including molecular diagnostics, immunoassays, clinical chemistry, and hematology. Analytical performance results show that our qualitative Zika virus assay has a limit of detection of 55 genomic copies/ml. For our anti-herpes simplex virus type 2 immunoglobulin G, lipid panel, and lymphocyte subset panel assays, the miniLab has low imprecision, and method comparison results agree well with those from the United States Food and Drug Administration-cleared devices. With its small footprint and versatility, the miniLab has the potential to provide testing of a range of analytes in decentralized locations.

2.
Langmuir ; 27(1): 250-63, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21128607

RESUMO

An enzyme charge ladder was used to examine the role of electrostatic interactions involved in biocatalysis at the solid-liquid interface. The reactive substrate consisted of an immobilized bovine serum albumin (BSA) multilayer prepared using a layer-by-layer technique. The zeta potential of the BSA substrate and each enzyme variant was measured to determine the absolute charge in solution. Enzyme adsorption and the rate of substrate surface hydrolysis were monitored for the enzyme charge ladder series to provide information regarding the strength of the enzyme-substrate interaction and the rate of interfacial biocatalysis. First, each variant of the charge ladder was examined at pH 8 for various solution ionic strengths. We found that for positively charged variants the adsorption increased with the magnitude of the charge until the surface became saturated. For higher ionic strength solutions, a greater positive enzyme charge was required to induce adsorption. Interestingly, the maximum catalytic rate was not achieved at enzyme saturation but at an invariable intermediate level of adsorption for each ionic strength value. Furthermore, the maximum achievable reaction rate for the charge ladder was larger for higher ionic strength values. We propose that diffusion plays an important role in interfacial biocatalysis, and for strong enzyme-substrate interaction, the rate of diffusion is reduced, leading to a decrease in the overall reaction rate. We investigated the effect of substrate charge by varying the solution pH from 6.1 to 8.7 and by examining multiple ionic strength values for each pH. The same intermediate level of adsorption was found to maximize the overall reaction rate. However, the ionic strength response of the maximum achievable rate was clearly dependent on the pH of the experiment. We propose that this observation is not a direct effect of pH but is caused by the change in substrate surface charge induced by changing the pH. To prove this hypothesis, BSA substrates were chemically modified to reduce the magnitude of the negative charge at pH 8. Chemical modification was accomplished by the amidation of aspartic and glutamic acids to asparagine and glutamine. The ionic strength response of the chemically modified substrate was considerably different than that for the native BSA substrate at an identical pH, consistent with the trend based on substrate surface charge. Consequently, for substrates with a low net surface charge, the maximum achievable catalytic rate of the charge ladder was relatively independent of the solution ionic strength over the range examined; however, at high net substrate surface charge, the maximum rate showed a considerable ionic strength dependence.


Assuntos
Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Adsorção , Animais , Bovinos , Cellulomonas/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Concentração Osmolar , Conformação Proteica , Serina Proteases/química , Serina Proteases/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Eletricidade Estática , Propriedades de Superfície
3.
Langmuir ; 26(24): 18916-25, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21080656

RESUMO

This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.


Assuntos
Biocatálise , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Eletricidade Estática , Adsorção , Animais , Bovinos , Cellulomonas/enzimologia , Difusão , Cinética , Concentração Osmolar , Propriedades de Superfície
4.
Mayo Clin Proc ; 84(5): 446-56, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19411441

RESUMO

More than a decade has passed since the conclusion of the Minnesota tobacco trial and the signing of the Master Settlement Agreement (MSA) by 46 US State Attorneys General and the US tobacco industry. The Minnesota settlement exposed the tobacco industry's long history of deceptive marketing, advertising, and research and ultimately forced the industry to change its business practices. The provisions for public document disclosure that were included in the Minnesota settlement and the MSA have resulted in the release of approximately 70 million pages of documents and nearly 20,000 other media materials. No comparable dynamic, voluminous, and contemporaneous document archive exists. Only a few single events in the history of public health have had as dramatic an effect on tobacco control as the public release of the tobacco industry's previously secret internal documents. This review highlights the genesis of the release of these documents, the history of the document depositories created by the Minnesota settlement, the scientific and policy output based on the documents, and the use of the documents in furthering global public health strategies.


Assuntos
Documentação , Fumar/legislação & jurisprudência , Indústria do Tabaco/legislação & jurisprudência , Cumplicidade , Revelação , Humanos , Armazenamento e Recuperação da Informação , Responsabilidade Legal , Minnesota , Responsabilidade Social , Indústria do Tabaco/ética , Organização Mundial da Saúde
5.
Langmuir ; 24(21): 12303-11, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18844383

RESUMO

Surface plasmon resonance and surface plasmon fluorescence spectroscopy in combination have the potential to distinguish multicomponent surface processes. However, surface intensity variations from resonance angle shifts lead to a nonlinear response in the fluorescence intensity. We report a method to account for surface intensity variations using the experimentally measured relationship between fluorescence and reflectivity. We apply this method to monitor protease adsorption and proteolytic substrate degradation simultaneously. Multilayer protein substrates are prepared for these degradation studies using a layer-by-layer technique.

6.
Langmuir ; 24(24): 13944-56, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19360953

RESUMO

In this work, we studied the interactions of enzymes with model substrate surfaces using label-free techniques. Our model system was based on serine proteases (a class of enzymes that digests proteins) and surface-bound polypeptide substrates. While previous studies have focused on bulk media factors such as pH, ionic strength, and surfactants, this study focuses on the role of the surface-bound substrate itself. In particular, we assess how the substrate density of a polypeptide with an alpha-helical secondary structure influences surface reactivity. An alpha-helical secondary structure was chosen based on literature indicating that stable alpha-helices can resist enzymatic digestion. To investigate the protease resistance of a surface-bound a-helix, we designed an a-helical polypeptide (SS-polypeptide, where SS = disulfide), used it to form films of varying surface coverage and then measured responses of the films to enzymatic exposure. Using quartz-crystal microbalance with dissipation (QCM-D), angle-resolved X-ray photoelectron spectroscopy (AR-XPS), grazing-angle infrared spectroscopy (GAIRS), and other techniques, we characterized the degradation of films to determine how the lateral packing density of the surface-bound SS-polypeptide substrate affected surface proteolysis. Characterization of pure SS-polypeptide films indicated dense packing of helices that maintained their helical structure and were generally oriented normal to the surface. We found that films of pure SS-polypeptide significantly resisted enzymatic digestion, while incorporation of very minor amounts of a diluent in such films resulted in rapid digestion. In part, this may be due to the need for the enzyme to bind several peptides along the peptide substrate within the cleft for digestion to occur. Only SS-polypeptide films that were densely packed and did not permit catalytic access to multiple peptides (e.g., terminal peptides only) were resistant to enzymatic proteolysis.


Assuntos
Bacillus/enzimologia , Peptídeos/química , Peptídeos/metabolismo , Serina Endopeptidases/metabolismo , Domínio Catalítico , Dicroísmo Circular , Hidrólise , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
7.
Anal Chem ; 77(24): 8146-50, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16351167

RESUMO

We present a study of the simultaneous observation of protease reaction and surface diffusion as the enzyme interacts with a model substrate surface. We use micro-fluidic patterning to decorate a bovine serum albumin substrate surface with stripes of adsorbed enzyme in the absence of physical barriers. Spreading of the enzyme from the initial striped region indicates surface diffusion, while removal of the substrate provides a measure of reactivity. Microfluidic patterning provides a means to determine the relative importance of enzyme adsorption, surface diffusion, and reaction on the rate of substrate removal.


Assuntos
Enzimas/química , Enzimas/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Animais , Bovinos , Difusão , Recuperação de Fluorescência Após Fotodegradação , Soroalbumina Bovina/metabolismo , Subtilisina/metabolismo , Propriedades de Superfície
8.
Kidney Int ; 68(2): 867-77, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16014068

RESUMO

BACKGROUND: Hemofiltration in the form of continuous venovenous hemofiltration (CVVH) is increasingly used to treat acute renal failure. Compared to hemodialysis, hemofiltration provides high clearances for large solutes but its effect on protein-bound solutes has been largely ignored. METHODS: Standard clinical systems were used to remove test solutes from a reservoir containing artificial plasma. Clearances of the protein-bound solutes phenol red (C(PR)) and indican (C(IN)) were compared to clearances of urea (C(UREA)) during hemofiltration and hemodiafiltration. A mathematical model was developed to predict clearances from values for plasma flow Q(p), dialysate flow Q(d), ultrafiltration rate Q(f), filter size and the extent of solute binding to albumin. RESULTS: When hemofiltration was performed with Q(p) 150 mL/min and Q(f) 17 mL/min, clearance values were C(PR) 1.0 +/- 0.1 mL/min; C(IN) 3.7 +/- 0.5 mL/min; and C(UREA) 14 +/- 1 mL/min. The clearance of the protein-bound solutes was approximately equal to the solute-free fraction multiplied by the ultrafiltration rate corrected for the effect of predilution. Addition of Q(d) 42 mL/min to provide HDF while Q(p) remained 150 mL/min resulted in proportional increases in the clearance of protein-bound solutes and urea. In contrast, the clearance of protein-bound solutes relative to urea increased when hemodiafiltration was performed using a larger filter and increasing Q(d) to 300 mL/min while Q(p) was lowered to 50 mL/min. The pattern of observed results was accurately predicted by mathematical modeling. CONCLUSION: In vitro measurements and mathematical modeling indicate that CVVH provides very limited clearance of protein-bound solutes. Continuous venous hemodiafiltration (CVVHDF) increases the clearance of protein-bound solutes relative to urea only when dialysate flow rate and filter size are increased above values now commonly employed.


Assuntos
Lesão Renal Aguda/terapia , Hemodiafiltração/métodos , Hemofiltração/métodos , Modelos Teóricos , Proteínas/farmacocinética , Humanos , Técnicas In Vitro , Indicã/farmacocinética , Indicadores e Reagentes/farmacocinética , Fenolsulfonaftaleína/farmacocinética , Ligação Proteica , Soluções/farmacocinética , Ureia/farmacocinética
9.
J Am Soc Nephrol ; 15(7): 1927-35, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15213283

RESUMO

Clinical hemodialysis systems achieve high single pass extraction of small solutes that are not bound to plasma proteins. But they clear protein-bound solutes much less effectively. This study examines the extent to which clearance of a protein-bound test solute is improved by increasing the dialyzer mass transfer area coefficient (KoA) and the dialysate flow rate (Qd). A reservoir containing test solutes and artificial plasma with albumin concentration approximately 4 g/dl was dialyzed with a standard clinical dialysate delivery system. The clearance of phenol red (ClPR) was compared with the clearances of urea and creatinine at a plasma flow rate (Qp) of 200 ml/min with varying values of KoA and Qd. ClPR increased from 11 +/- 2 ml/min to 23 +/- 2 ml/min when KoA for phenol red, KoAPR, was increased from 238 to 640 ml/min and Qd was increased from 286 +/- 6 ml/min to 734 +/- 9 ml/min. Increasing either KoAPR or Qd alone had lesser effects. Clearance values for phenol red were much lower than clearance values for the unbound solutes urea and creatinine, which ranged from 150 to 200 ml/min and were less affected by varying KoA and Qd. A mathematical model was developed to predict ClPR from values of Qp, Qd, the fraction of phenol red bound to albumin (94% +/- 1%) and KoAPR. The model accurately predicts the pattern of measured results and shows further that ClPR can be made to approach Qp only by very large increases in both KoAPR and Qd.


Assuntos
Albuminas/metabolismo , Falência Renal Crônica/terapia , Diálise Renal/métodos , Soluções para Diálise , Hemofiltração , Humanos , Membranas Artificiais , Modelos Estatísticos , Modelos Teóricos , Fenolsulfonaftaleína/química , Fenolsulfonaftaleína/farmacologia , Ligação Proteica , Proteínas/química , Fatores de Tempo , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA