Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(12)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33741595

RESUMO

Quantum key distribution-exchanging a random secret key relying on a quantum mechanical resource-is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks. Here, we use a coherently driven quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250-m-long single-mode fiber and in free space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication.

2.
Phys Rev Lett ; 121(16): 160602, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387653

RESUMO

The Clausius inequality has deep implications for reversibility and the arrow of time. Quantum theory is able to extend this result for closed systems by inspecting the trajectory of the density matrix on its manifold. Here we show that this approach can provide an upper and lower bound to the irreversible entropy production for open quantum systems as well. These provide insights on how the information on the initial state is forgotten through a thermalization process. Limits of the applicability of our bounds are discussed and demonstrated in a quantum photonic simulator.

3.
Opt Lett ; 43(16): 4045-4048, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30106948

RESUMO

The simplicity of a question, such as wondering whether or not correlations characterize a certain system, collides with the experimental difficulty of accessing such information. Here we present a low-demanding experimental approach that refers to the use of a metrology scheme to obtain a conservative estimate of the strength of frequency correlations. Our test bed is the widespread case of a photon pair produced per downconversion. The theoretical architecture used to put the correlation degree on a quantitative ground is also described.

4.
Sci Rep ; 7(1): 7247, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775259

RESUMO

Not much, in the end. Here we put forward some considerations on how Hong-Ou-Mandel interferometry provides signatures of frequency entanglement in the two-photon state produced by parametric down-conversion. We find that some quantitative information can be inferred in the limit of long-pulse pumping, while the short-pulse limit remains elusive.

5.
Phys Rev Lett ; 118(13): 130502, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28409967

RESUMO

Standard thermometry employs the thermalization of a probe with the system of interest. This approach can be extended by incorporating the possibility of using the nonequilibrium states of the probe and the presence of coherence. Here, we illustrate how these concepts apply to the single-qubit thermometer introduced by Jevtic et al. [Phys. Rev. A 91, 012331 (2015)PLRAAN1050-294710.1103/PhysRevA.91.012331] by performing a simulation of the qubit-environment interaction in a linear-optical device. We discuss the role of the coherence and how this affects the usefulness of nonequilibrium conditions. The origin of the observed behavior is traced back to how the coherence affects the propensity to thermalization. We discuss this aspect by considering the availability function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...