Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
BMJ ; 374: n1904, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470785

RESUMO

OBJECTIVE: To investigate the associations between air pollution and mortality, focusing on associations below current European Union, United States, and World Health Organization standards and guidelines. DESIGN: Pooled analysis of eight cohorts. SETTING: Multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) in six European countries. PARTICIPANTS: 325 367 adults from the general population recruited mostly in the 1990s or 2000s with detailed lifestyle data. Stratified Cox proportional hazard models were used to analyse the associations between air pollution and mortality. Western Europe-wide land use regression models were used to characterise residential air pollution concentrations of ambient fine particulate matter (PM2.5), nitrogen dioxide, ozone, and black carbon. MAIN OUTCOME MEASURES: Deaths due to natural causes and cause specific mortality. RESULTS: Of 325 367 adults followed-up for an average of 19.5 years, 47 131 deaths were observed. Higher exposure to PM2.5, nitrogen dioxide, and black carbon was associated with significantly increased risk of almost all outcomes. An increase of 5 µg/m3 in PM2.5 was associated with 13% (95% confidence interval 10.6% to 15.5%) increase in natural deaths; the corresponding figure for a 10 µg/m3 increase in nitrogen dioxide was 8.6% (7% to 10.2%). Associations with PM2.5, nitrogen dioxide, and black carbon remained significant at low concentrations. For participants with exposures below the US standard of 12 µg/m3 an increase of 5 µg/m3 in PM2.5 was associated with 29.6% (14% to 47.4%) increase in natural deaths. CONCLUSIONS: Our study contributes to the evidence that outdoor air pollution is associated with mortality even at low pollution levels below the current European and North American standards and WHO guideline values. These findings are therefore an important contribution to the debate about revision of air quality limits, guidelines, and standards, and future assessments by the Global Burden of Disease.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Exposição Ambiental/efeitos adversos , Doenças não Transmissíveis/mortalidade , Europa (Continente) , Humanos
2.
Lancet Planet Health ; 5(9): e620-e632, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34508683

RESUMO

BACKGROUND: Long-term exposure to outdoor air pollution increases the risk of cardiovascular disease, but evidence is unclear on the health effects of exposure to pollutant concentrations lower than current EU and US standards and WHO guideline limits. Within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we investigated the associations of long-term exposures to fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and warm-season ozone (O3) with the incidence of stroke and acute coronary heart disease. METHODS: We did a pooled analysis of individual data from six population-based cohort studies within ELAPSE, from Sweden, Denmark, the Netherlands, and Germany (recruited 1992-2004), and harmonised individual and area-level variables between cohorts. Participants (all adults) were followed up until migration from the study area, death, or incident stroke or coronary heart disease, or end of follow-up (2011-15). Mean 2010 air pollution concentrations from centrally developed European-wide land use regression models were assigned to participants' baseline residential addresses. We used Cox proportional hazards models with increasing levels of covariate adjustment to investigate the association of air pollution exposure with incidence of stroke and coronary heart disease. We assessed the shape of the concentration-response function and did subset analyses of participants living at pollutant concentrations lower than predefined values. FINDINGS: From the pooled ELAPSE cohorts, data on 137 148 participants were analysed in our fully adjusted model. During a median follow-up of 17·2 years (IQR 13·8-19·5), we observed 6950 incident events of stroke and 10 071 incident events of coronary heart disease. Incidence of stroke was associated with PM2·5 (hazard ratio 1·10 [95% CI 1·01-1·21] per 5 µg/m3 increase), NO2 (1·08 [1·04-1·12] per 10 µg/m3 increase), and black carbon (1·06 [1·02-1·10] per 0·5 10-5/m increase), whereas coronary heart disease incidence was only associated with NO2 (1·04 [1·01-1·07]). Warm-season O3 was not associated with an increase in either outcome. Concentration-response curves indicated no evidence of a threshold below which air pollutant concentrations are not harmful for cardiovascular health. Effect estimates for PM2·5 and NO2 remained elevated even when restricting analyses to participants exposed to pollutant concentrations lower than the EU limit values of 25 µg/m3 for PM2·5 and 40 µg/m3 for NO2. INTERPRETATION: Long-term air pollution exposure was associated with incidence of stroke and coronary heart disease, even at pollutant concentrations lower than current limit values. FUNDING: Health Effects Institute.

3.
Sci Total Environ ; 804: 150091, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34517316

RESUMO

BACKGROUND: Ambient air pollution exposure has been associated with higher mortality risk in numerous studies. We assessed potential variability in the magnitude of this association for non-accidental, cardiovascular disease, respiratory disease, and lung cancer mortality in a country-wide administrative cohort by exposure assessment method and by adjustment for geographic subdivisions. METHODS: We used the Belgian 2001 census linked to population and mortality register including nearly 5.5 million adults aged ≥30 (mean follow-up: 9.97 years). Annual mean concentrations for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) were assessed at baseline residential address using two exposure methods; Europe-wide hybrid land use regression (LUR) models [100x100m], and Belgium-wide interpolation-dispersion (RIO-IFDM) models [25x25m]. We used Cox proportional hazards models with age as the underlying time scale and adjusted for various individual and area-level covariates. We further adjusted main models for two different area-levels following the European Nomenclature of Territorial Units for Statistics (NUTS); NUTS-1 (n = 3), or NUTS-3 (n = 43). RESULTS: We found no consistent differences between both exposure methods. We observed most robust associations with lung cancer mortality. Hazard Ratios (HRs) per 10 µg/m3 increase for NO2 were 1.060 (95%CI 1.042-1.078) [hybrid LUR] and 1.040 (95%CI 1.022-1.058) [RIO-IFDM]. Associations with non-accidental, respiratory disease and cardiovascular disease mortality were generally null in main models but were enhanced after further adjustment for NUTS-1 or NUTS-3. HRs for non-accidental mortality per 5 µg/m3 increase for PM2.5 for the main model using hybrid LUR exposure were 1.023 (95%CI 1.011-1.035). After including random effects HRs were 1.044 (95%CI 1.033-1.057) [NUTS-1] and 1.076 (95%CI 1.060-1.092) [NUTS-3]. CONCLUSION: Long-term air pollution exposure was associated with higher lung cancer mortality risk but not consistently with the other studied causes. Magnitude of associations varied by adjustment for geographic subdivisions, area-level socio-economic covariates and less by exposure assessment method.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34444557

RESUMO

OBJECTIVE: To analyse the trends in chronic liver diseases and cirrhosis mortality, and the associated socioeconomic inequalities, in nine European cities and urban areas before and after the onset of the 2008 financial crisis. METHODS: This is an ecological study of trends in three periods of time: two before (2000-2003 and 2004-2008), and one after (2009-2014) the onset of the economic crisis. The units of analysis were the geographical areas of nine cities or urban areas in Europe. We analysed chronic liver diseases and cirrhosis standardised mortality ratios, smoothing them with a hierarchical Bayesian model by each city, area, and sex. An ecological regression model was fitted to analyse the trends in socioeconomic inequalities, and included the socioeconomic deprivation index, the period, and their interaction. RESULTS: In general, chronic liver diseases and cirrhosis mortality rates were higher in men than in women. These rates decreased in all cities during the financial crisis, except among men in Athens (rates increased from 8.50 per 100,000 inhabitants during the second period to 9.42 during the third). Socioeconomic inequalities in chronic liver diseases and cirrhosis mortality were found in six cities/metropolitan areas among men, and in four among women. Finally, in the periods studied, such inequalities did not significantly change. However, among men they increased in Turin and Barcelona and among women, several cities had lower inequalities in the third period. CONCLUSIONS: There are geographical socioeconomic inequalities in chronic liver diseases and cirrhosis mortality, mainly among men, that did not change during the 2008 financial crisis. These results should be monitored in the long term.


Assuntos
Recessão Econômica , Cirrose Hepática , Teorema de Bayes , Cidades , Feminino , Disparidades nos Níveis de Saúde , Humanos , Masculino , Mortalidade , Fatores Socioeconômicos , Espanha
5.
Int J Cancer ; 149(11): 1887-1897, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34278567

RESUMO

Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter <2.5 µm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 µg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 µg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.

6.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088754

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5 µg·m-3 for PM2.5, 1.17 (95% CI 1.10-1.25) per 10 µg·m-3 for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5×10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , Exposição Ambiental/análise , Europa (Continente) , Humanos , Incidência , Material Particulado/análise , Suécia
7.
Environ Health Perspect ; 129(4): 47009, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844598

RESUMO

BACKGROUND: Inconsistent associations between long-term exposure to particles with an aerodynamic diameter ≤2.5 µm [fine particulate matter (PM2.5)] components and mortality have been reported, partly related to challenges in exposure assessment. OBJECTIVES: We investigated the associations between long-term exposure to PM2.5 elemental components and mortality in a large pooled European cohort; to compare health effects of PM2.5 components estimated with two exposure modeling approaches, namely, supervised linear regression (SLR) and random forest (RF) algorithms. METHODS: We pooled data from eight European cohorts with 323,782 participants, average age 49 y at baseline (1985-2005). Residential exposure to 2010 annual average concentration of eight PM2.5 components [copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V), and zinc (Zn)] was estimated with Europe-wide SLR and RF models at a 100×100 m scale. We applied Cox proportional hazards models to investigate the associations between components and natural and cause-specific mortality. In addition, two-pollutant analyses were conducted by adjusting each component for PM2.5 mass and nitrogen dioxide (NO2) separately. RESULTS: We observed 46,640 natural-cause deaths with 6,317,235 person-years and an average follow-up of 19.5 y. All SLR-modeled components were statistically significantly associated with natural-cause mortality in single-pollutant models with hazard ratios (HRs) from 1.05 to 1.27. Similar HRs were observed for RF-modeled Cu, Fe, K, S, V, and Zn with wider confidence intervals (CIs). HRs for SLR-modeled Ni, S, Si, V, and Zn remained above unity and (almost) significant after adjustment for both PM2.5 and NO2. HRs only remained (almost) significant for RF-modeled K and V in two-pollutant models. The HRs for V were 1.03 (95% CI: 1.02, 1.05) and 1.06 (95% CI: 1.02, 1.10) for SLR- and RF-modeled exposures, respectively, per 2 ng/m3, adjusting for PM2.5 mass. Associations with cause-specific mortality were less consistent in two-pollutant models. CONCLUSION: Long-term exposure to V in PM2.5 was most consistently associated with increased mortality. Associations for the other components were weaker for exposure modeled with RF than SLR in two-pollutant models. https://doi.org/10.1289/EHP8368.

8.
Sci Total Environ ; 772: 145383, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578152

RESUMO

The health effects of acute exposure to temperature extremes are established; those of long-term exposure only recently received attention. We performed a systematic review to assess the associations of long-term (>3 months) exposure to higher or lower temperature on total and cardiopulmonary mortality and morbidity, screening 3455 studies and selecting 34. The studies were classified in those observing associations within a population over years with changing annual temperature indices and those comparing areas with a different climate. We also assessed the risk of bias, adapting appropriately an instrument developed by the World Health Organization for air pollution. Studies reported that annual temperature indices for extremes and variability were associated with annual increases in mortality, indicating that effects of temperature extremes cannot be attributed only to short-term mortality displacement. Studies on cardiovascular mortality indicated stronger associations with cold rather than hot temperature, whilst those on respiratory outcomes reported effects of both heat and cold but were few and used diverse health outcomes. Interactions with air pollution were not generally assessed. The few studies investigating effect modification showed stronger effects among the elderly and those socially deprived. Comparisons of health outcome prevalence between areas reported lower blood pressure and a tendency for higher obesity in populations living in warmer climates. Our review indicated interesting associations between long-term exposure to unusual temperature levels in specific areas and differences in health outcomes and cardiovascular risk factors between geographical locations with different climate, but the number of studies by design and health outcome was small. Risk of bias was identified because of the use of crude exposure assessment and inadequate adjustment for confounding. More and better designed studies, including the investigation of effect modifiers, are needed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/efeitos adversos , Fatores de Risco de Doenças Cardíacas , Humanos , Morbidade , Fatores de Risco , Temperatura
9.
Environ Int ; 147: 106371, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33422970

RESUMO

BACKGROUND: We evaluated methods for the analysis of multi-level survival data using a pooled dataset of 14 cohorts participating in the ELAPSE project investigating associations between residential exposure to low levels of air pollution (PM2.5 and NO2) and health (natural-cause mortality and cerebrovascular, coronary and lung cancer incidence). METHODS: We applied five approaches in a multivariable Cox model to account for the first level of clustering corresponding to cohort specification: (1) not accounting for the cohort or using (2) indicator variables, (3) strata, (4) a frailty term in frailty Cox models, (5) a random intercept under a mixed Cox, for cohort identification. We accounted for the second level of clustering due to common characteristics in the residential area by (1) a random intercept per small area or (2) applying variance correction. We assessed the stratified, frailty and mixed Cox approach through simulations under different scenarios for heterogeneity in the underlying hazards and the air pollution effects. RESULTS: Effect estimates were stable under approaches used to adjust for cohort but substantially differed when no adjustment was applied. Further adjustment for the small area grouping increased the effect estimates' standard errors. Simulations confirmed identical results between the stratified and frailty models. In ELAPSE we selected a stratified multivariable Cox model to account for between-cohort heterogeneity without adjustment for small area level, due to the small number of subjects and events in the latter. CONCLUSIONS: Our study supports the need to account for between-cohort heterogeneity in multi-center collaborations using pooled individual level data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Humanos , Material Particulado/análise
10.
Environ Int ; 146: 106306, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395948

RESUMO

INTRODUCTION: To characterize air pollution exposure at a fine spatial scale, different exposure assessment methods have been applied. Comparison of associations with health from different exposure methods are scarce. The aim of this study was to evaluate associations of air pollution based on hybrid, land-use regression (LUR) and dispersion models with natural cause and cause-specific mortality. METHODS: We followed a Dutch national cohort of approximately 10.5 million adults aged 29+ years from 2008 until 2012. We used Cox proportional hazard models with age as underlying time scale and adjusted for several potential individual and area-level socio-economic status confounders to evaluate associations of annual average residential NO2, PM2.5 and BC exposure estimates based on two stochastic models (Dutch LUR, European-wide hybrid) and deterministic Dutch dispersion models. RESULTS: Spatial variability of PM2.5 and BC exposure was smaller for LUR compared to hybrid and dispersion models. NO2 exposure variability was similar for the three methods. Pearson correlations between hybrid, LUR and dispersion modeled NO2 and BC ranged from 0.72 to 0.83; correlations for PM2.5 were slightly lower (0.61-0.72). In general, all three models showed stronger associations of air pollutants with respiratory disease and lung cancer mortality than with natural cause and cardiovascular disease mortality. The strength of the associations differed between the three exposure models. Associations of air pollutants estimated by LUR were generally weaker compared to associations of air pollutants estimated by hybrid and dispersion models. For natural cause mortality, we found a hazard ratio (HR) of 1.030 (95% confidence interval (CI): 1.019, 1.041) per 10 µg/m3 for hybrid modeled NO2, a HR of 1.003 (95% CI: 0.993, 1.013) per 10 µg/m3 for LUR modeled NO2 and a HR of 1.015 (95% CI: 1.005, 1.024) per 10 µg/m3 for dispersion modeled NO2. CONCLUSION: Air pollution was positively associated with natural cause and cause-specific mortality, but the strength of the associations differed between the three exposure models. Our study documents that the selected exposure model may contribute to heterogeneity in effect estimates of associations between air pollution and health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Respiratórias , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Material Particulado/efeitos adversos , Material Particulado/análise
11.
Environ Res ; 193: 110568, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33278469

RESUMO

BACKGROUND: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the "Effects of Low-level Air Pollution: A Study in Europe" (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence. METHODS: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). RESULTS: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m3 PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m3 PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m3 PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative. CONCLUSIONS: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Incidência , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Material Particulado/análise
12.
Environ Int ; 146: 106249, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197787

RESUMO

BACKGROUND/AIM: Ambient air pollution has been associated with lung cancer, but the shape of the exposure-response function - especially at low exposure levels - is not well described. The aim of this study was to address the relationship between long-term low-level air pollution exposure and lung cancer incidence. METHODS: The "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration pools seven cohorts from across Europe. We developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and ozone (O3) to assign exposure to cohort participants' residential addresses in 100 m by 100 m grids. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). We fitted linear models, linear models in subsets, Shape-Constrained Health Impact Functions (SCHIF), and natural cubic spline models to assess the shape of the association between air pollution and lung cancer at concentrations below existing standards and guidelines. RESULTS: The analyses included 307,550 cohort participants. During a mean follow-up of 18.1 years, 3956 incident lung cancer cases occurred. Median (Q1, Q3) annual (2010) exposure levels of NO2, PM2.5, BC and O3 (warm season) were 24.2 µg/m3 (19.5, 29.7), 15.4 µg/m3 (12.8, 17.3), 1.6 10-5m-1 (1.3, 1.8), and 86.6 µg/m3 (78.5, 92.9), respectively. We observed a higher risk for lung cancer with higher exposure to PM2.5 (HR: 1.13, 95% CI: 1.05, 1.23 per 5 µg/m3). This association was robust to adjustment for other pollutants. The SCHIF, spline and subset analyses suggested a linear or supra-linear association with no evidence of a threshold. In subset analyses, risk estimates were clearly elevated for the subset of subjects with exposure below the EU limit value of 25 µg/m3. We did not observe associations between NO2, BC or O3 and lung cancer incidence. CONCLUSIONS: Long-term ambient PM2.5 exposure is associated with lung cancer incidence even at concentrations below current EU limit values and possibly WHO Air Quality Guidelines.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Material Particulado/análise
13.
Environ Int ; 146: 106267, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276316

RESUMO

BACKGROUND: Air pollution has been suggested as a risk factor for chronic obstructive pulmonary disease (COPD), but evidence is sparse and inconsistent. OBJECTIVES: We examined the association between long-term exposure to low-level air pollution and COPD incidence. METHODS: Within the 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE) study, we pooled data from three cohorts, from Denmark and Sweden, with information on COPD hospital discharge diagnoses. Hybrid land use regression models were used to estimate annual mean concentrations of particulate matter with a diameter < 2.5 µm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in 2010 at participants' baseline residential addresses, which were analysed in relation to COPD incidence using Cox proportional hazards models. RESULTS: Of 98,058 participants, 4,928 developed COPD during 16.6 years mean follow-up. The adjusted hazard ratios (HRs) and 95% confidence intervals for associations with COPD incidence were 1.17 (1.06, 1.29) per 5 µg/m3 for PM2.5, 1.11 (1.06, 1.16) per 10 µg/m3 for NO2, and 1.11 (1.06, 1.15) per 0.5 10-5m-1 for BC. Associations persisted in subset participants with PM2.5 or NO2 levels below current EU and US limit values and WHO guidelines, with no evidence for a threshold. HRs for NO2 and BC remained unchanged in two-pollutant models with PM2.5, whereas the HR for PM2.5 was attenuated to unity with NO2 or BC. CONCLUSIONS: Long-term exposure to low-level air pollution is associated with the development of COPD, even below current EU and US limit values and possibly WHO guidelines. Traffic-related pollutants NO2 and BC may be the most relevant.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença Pulmonar Obstrutiva Crônica , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Incidência , Material Particulado/análise , Material Particulado/toxicidade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Suécia
14.
Eur Respir J ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303534

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, while evidence is still insufficient. Within the multicentre project "Effects of Low-Level Air Pollution: A Study in Europe" (ELAPSE), we examined the associations of long-term exposures to particulate matter with diameter<2.5 µm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a 16.6 years mean follow-up. We observed associations in fully adjusted models with hazard ratios and 95% confidence intervals of 1.22 (1.04-1.43) per 5 µg·m-3 for PM2.5, 1.17 (1.10-1.25) per 10 µg·m-3 for NO2, and 1.15 (1.08-1.23) per 0.5 10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the EU and US limit values and possibly WHO guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.

15.
Eur Respir Rev ; 29(158)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33115789

RESUMO

AIM: There is growing interest in the health effects following exposure to ambient particles with a diameter <100 nm defined as ultrafine particles (UFPs), although studies so far have reported inconsistent results. We have undertaken a systematic review and meta-analysis for respiratory hospital admissions and emergency room visits following short-term exposure to UFPs. METHODS: We searched PubMed and the Web of Science for studies published up to March 2019 to update previous reviews. We applied fixed- and random-effects models, assessed heterogeneity between cities and explored possible effect modifiers. RESULTS: We identified nine publications, reporting effects from 15 cities, 11 of which were European. There was great variability in exposure assessment, outcome measures and the exposure lags considered. Our meta-analyses did not support UFP effects on respiratory morbidity across all ages. We found consistent statistically significant associations following lag 2 exposure during the warm period and in cities with mean daily UFP concentrations <6000 particles·cm‒3, which was approximately the median of the city-specific mean levels. Among children aged 0-14 years, a 10 000 particle·cm‒3 increase in UFPs 2 or 3 days before was associated with a relative risk of 1.01 (95% CI 1.00-1.02) in respiratory hospital admissions. CONCLUSIONS: Our study indicates UFP effects on respiratory health among children, and during the warm season across all ages at longer lags. The limited evidence and the large heterogeneity of previous reports call for future exposure assessment harmonisation and expanded research.

16.
Environ Epidemiol ; 4(3): e093, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32656488

RESUMO

Using modeled air pollutant predictions as exposure variables in epidemiological analyses can produce bias in health effect estimation. We used statistical simulation to estimate these biases and compare different air pollution models for London. Methods: Our simulations were based on a sample of 1,000 small geographical areas within London, United Kingdom. "True" pollutant data (daily mean nitrogen dioxide [NO2] and ozone [O3]) were simulated to include spatio-temporal variation and spatial covariance. All-cause mortality and cardiovascular hospital admissions were simulated from "true" pollution data using prespecified effect parameters for short and long-term exposure within a multilevel Poisson model. We compared: land use regression (LUR) models, dispersion models, LUR models including dispersion output as a spline (hybrid1), and generalized additive models combining splines in LUR and dispersion outputs (hybrid2). Validation datasets (model versus fixed-site monitor) were used to define simulation scenarios. Results: For the LUR models, bias estimates ranged from -56% to +7% for short-term exposure and -98% to -68% for long-term exposure and for the dispersion models from -33% to -15% and -52% to +0.5%, respectively. Hybrid1 provided little if any additional benefit, but hybrid2 appeared optimal in terms of bias estimates for short-term (-17% to +11%) and long-term (-28% to +11%) exposure and in preserving coverage probability and statistical power. Conclusions: Although exposure error can produce substantial negative bias (i.e., towards the null), combining outputs from different air pollution modeling approaches may reduce bias in health effect estimation leading to improved impact evaluation of abatement policies.

17.
Environ Epidemiol ; 4(3): e094, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32656489

RESUMO

Various spatiotemporal models have been proposed for predicting ambient particulate exposure for inclusion in epidemiological analyses. We investigated the effect of measurement error in the prediction of particulate matter with diameter <10 µm (PM10) and <2.5 µm (PM2.5) concentrations on the estimation of health effects. Methods: We sampled 1,000 small administrative areas in London, United Kingdom, and simulated the "true" underlying daily exposure surfaces for PM10 and PM2.5 for 2009-2013 incorporating temporal variation and spatial covariance informed by the extensive London monitoring network. We added measurement error assessed by comparing measurements at fixed sites and predictions from spatiotemporal land-use regression (LUR) models; dispersion models; models using satellite data and applying machine learning algorithms; and combinations of these methods through generalized additive models. Two health outcomes were simulated to assess whether the bias varies with the effect size. We applied multilevel Poisson regression to simultaneously model the effect of long- and short-term pollutant exposure. For each scenario, we ran 1,000 simulations to assess measurement error impact on health effect estimation. Results: For long-term exposure to particles, we observed bias toward the null, except for traffic PM2.5 for which only LUR underestimated the effect. For short-term exposure, results were variable between exposure models and bias ranged from -11% (underestimate) to 20% (overestimate) for PM10 and of -20% to 17% for PM2.5. Integration of models performed best in almost all cases. Conclusions: No single exposure model performed optimally across scenarios. In most cases, measurement error resulted in attenuation of the effect estimate.

18.
Environ Res ; 182: 109002, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31855698

RESUMO

BACKGROUND: Although there is evidence on the effects of short-term ozone (O3) exposures on children's respiratory health, few studies have reported results on the effects of long-term exposures. We report the effects of long-term exposure to O3 on respiratory health outcomes in 10-11-year old children. METHODS: We conducted a panel study in a sample of the general population of school children in two cities with high average O3 concentrations, Athens and Thessaloniki, Greece. All 186 participating students were followed up intensively for 5 weeks spreading across a school year. Data was collected through questionnaires, weekly personal O3 measurements, spirometry, FeNO and time-activity diaries. Long-term O3 exposure was assessed using fixed site measurements and modeling, calibrated for personal exposures. The associations between measured lung function parameters and lung function growth over the study period, as well as FeNO and the occurrence of symptoms with long-term O3 exposure were assessed through the application of multiple mixed effects 2-level regression models, adjusting for confounders and for short-term exposures. RESULTS: A 10 µg/m3 increase in calibrated long-term O3exposure, using measurements from fixed site monitors was associated with lower FVC and FEV1 by 17 mL (95% Confidence Interval: 5-28) and 13 mL (3-21) respectively and small decreases in lung growth: 0.008% (0.002-0.014%) for FVC and 0.006% (0.000-0.012%) in FEV1 over the study period. No association was observed with PEF, FeNO or the occurrence of symptoms. A similar pattern was observed when the exposure estimates from the dispersion models were employed. CONCLUSIONS: Our study provides evidence that long-term O3 exposure is associated with reduced lung volumes and growth.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Doenças Respiratórias , Criança , Cidades , Exposição Ambiental , Grécia , Humanos , Pulmão/patologia , Pulmão/fisiopatologia , Medidas de Volume Pulmonar , Ozônio/toxicidade , Doenças Respiratórias/etiologia
19.
Sci Total Environ ; 658: 1630-1639, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30678019

RESUMO

Urban areas in Europe are facing a range of environmental public health challenges, such as air pollution, traffic noise and road injuries. The identification and quantification of the public health risks associated with exposure to environmental conditions is important for prioritising policies and interventions that aim to diminish the risks and improve the health of the population. With this purpose in mind, the EURO-HEALTHY project used a consistent approach to assess the impact of key environmental risk factors and urban environmental determinants on public health in European metropolitan areas. A number of environmental public health indicators, which are closely tied to the physical and built environment, were identified through stakeholder consultation; data were collected from six European metropolitan areas (Athens, Barcelona, Lisbon, London, Stockholm and Turin) covering the period 2000-2014, and a health impact assessment framework enabled the quantification of health effects (attributable deaths) associated with these indicators. The key environmental public health indicators were related to air pollution and certain urban environmental conditions (urban green spaces, road safety). The air pollution was generally the highest environmental public health risk; the associated number of deaths in Athens, Barcelona and London ranged between 800 and 2300 attributable deaths per year. The number of victims of road traffic accidents and the associated deaths were lowest in the most recent year compared with previous years. We also examined the positive impacts on health associated with urban green spaces by calculating reduced mortality impacts for populations residing in areas with greater green space coverage; results in Athens showed reductions of all-cause mortality of 26 per 100,000 inhabitants for populations with benefits of local greenspace. Based on our analysis, we discuss recommendations of potential interventions that could be implemented to reduce the environmental public health risks in the European metropolitan areas covered by this study.


Assuntos
Acidentes de Trânsito , Poluição do Ar/análise , Avaliação do Impacto na Saúde , Ruído , Cidades , Saúde Ambiental , Europa (Continente) , Avaliação do Impacto na Saúde/legislação & jurisprudência , Humanos , Saúde Pública
20.
Environ Res ; 165: 228-234, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29727823

RESUMO

BACKGROUND: Assessment of the cumulative effect of correlated exposures is an open methodological issue in environmental epidemiology. Most previous studies have applied regression models with interaction terms or dimension reduction methods. The combined effect of pollutants has been also evaluated through the use of exposure scores that incorporate weights based on the strength of the component-specific associations with health outcomes. METHODS: We compared three approaches addressing multi-pollutant exposures in epidemiological models: main effects models, the adaptive least absolute shrinkage and selection operator (LASSO) and a weighted exposure score. We assessed the performance of the methods by simulations under various scenarios for the pollutants' correlations. We further applied these methods to time series data from Athens, Greece in 2007-12 to investigate the combined effect of short-term exposure to six regulated pollutants on all-cause and respiratory mortality. RESULTS: The exposure score provided the least biased estimate under all correlation scenarios for both mortality outcomes. The adaptive LASSO performed well in the case of low and medium correlation between exposures while the main effect model resulted in severe bias. In the real data application, the cumulative effect estimate was similar between approaches for all-cause mortality ranging from 0.7% increase per interquartile range (IQR) (score) to 1.1% (main effects), while for respiratory mortality conclusions were contradictive and ranged from - 0.6% (adaptive LASSO) to 2.8% (score). CONCLUSIONS: Τhe use of a weighted exposure score to address cumulative effects of correlated metrics may perform well under different exposure correlation and variability in the health outcomes.


Assuntos
Exposição Ambiental/análise , Poluentes Ambientais/efeitos adversos , Grécia , Humanos , Modelos Teóricos , Mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...