Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(1): 287-307, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31876414

RESUMO

SbPO4 is a complex monoclinic layered material characterized by a strong activity of the nonbonding lone electron pair (LEP) of Sb. The strong cation LEP leads to the formation of layers piled up along the a axis and linked by weak Sb-O electrostatic interactions. In fact, Sb has 4-fold coordination with O similarly to what occurs with the P-O coordination, despite the large difference in ionic radii and electronegativity between both elements. Here we report a joint experimental and theoretical study of the structural and vibrational properties of SbPO4 at high pressure. We show that SbPO4 is not only one of the most compressible phosphates but also one of the most compressible compounds of the ABO4 family. Moreover, it has a considerable anisotropic compression behavior, with the largest compression occurring along a direction close to the a axis and governed by the compression of the LEP and the weak interlayer Sb-O bonds. The strong compression along the a axis leads to a subtle modification of the monoclinic crystal structure above 3 GPa, leading from a 2D to a 3D material. Moreover, the onset of a reversible pressure-induced phase transition is observed above 9 GPa, which is completed above 20 GPa. We propose that the high-pressure phase is a triclinic distortion of the original monoclinic phase. The understanding of the compression mechanism of SbPO4 can aid to improve the ion intercalation and catalytic properties of this layered compound.

2.
IUCrJ ; 6(Pt 1): 105-115, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30713708

RESUMO

The present article is devoted to the characterization of the structural phase transitions of the [CH3NH3][Co(COOH)3] (1) perovskite-like metal-organic compound through variable-temperature single-crystal neutron diffraction. At room temperature, compound 1 crystallizes in the orthorhombic space group Pnma (phase I). A decrease in temperature gives rise to a first phase transition from the space group Pnma to an incommensurate phase (phase II) at approximately 128 K. At about 96 K, this incommensurate phase evolves into a second phase with a sharp change in the modulation vector (phase III). At lower temperatures (ca 78 K), the crystal structure again becomes commensurate and can be described in the monoclinic space group P21/n (phase IV). Although phases I and IV have been reported previously [Boca et al. (2004). Acta Cryst. C60, m631-m633; Gómez-Aguirre et al. (2016). J. Am. Chem. Soc. 138, 1122-1125; Mazzuca et al. (2018). Chem. Eur. J. 24, 388-399], phases III and IV corresponding to the Pnma(00γ)0s0 space group have not yet been described. These phase transitions involve not only the occurrence of small distortions in the three-dimensional anionic [Co(HCOO)3]- framework, but also the reorganization of the [CH3NH3]+ counter-ions in the cavities of the structure, which gives rise to an alteration of the hydrogen-bonded network, modifying the electrical properties of compound 1.

3.
Sci Rep ; 8(1): 10665, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006614

RESUMO

(ND4)2[FeCl5(D2O)] represents a promising example of the hybrid molecular/inorganic approach to create materials with strong magneto-electric coupling. Neutron spherical polarimetry, which is directly sensitive to the absolute magnetic configuration and domain population, has been used in this work to unambiguously prove the multiferroicity of this material. We demonstrate that the application of an electric field upon cooling results in the stabilization of a single-cycloidal magnetic domain below 6.9 K, while poling in the opposite electric field direction produces the full population of the domain with opposite magnetic chirality. We prove the complete switchability of the magnetic domains at low temperature by the applied electric field, which constitutes a direct proof of the strong magnetoelectric coupling. Additionally, we refine the magnetic structure of the ordered ground state, deducing the underlying magnetic space group consistent with the direction of the ferroelectric polarization, and we provide evidence of a collinear amplitude-modulated state with magnetic moments along the a-axis in the temperature region between 6.9 and 7.2 K.

4.
Chemistry ; 24(2): 388-399, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28858419

RESUMO

The characterization of the crystal structure, phase transitions, magnetic structure and dielectric properties has been carried out on [CH3 NH3 ][Co(COOH)3 ] (1) perovskite-like metal-organic compound through variable-temperature single-crystal and powder neutron and X-ray diffraction and relative permittivity measurements. The paraelectric to antiferroelectric-like phase transition observed at around 90 K is triggered by a structural phase transition; the structural studies show a change from Pnma space group at RT (1A) to P21 /n space group at low temperature (1B). This phase transition involves the occurrence of small distortions in the framework and counterions. Neutron diffraction studies have shown a magnetic order showing spontaneous magnetization below 15 K, due to the occurrence of a non-collinear antiferromagnetic structure with a weak ferromagnetic component, mainly due to the single-ion anisotropy of the CoII ions.

5.
Inorg Chem ; 56(1): 197-207, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27935298

RESUMO

A study of the magnetic structure of the [NH2(CH3)2]n[FeIIIMII(HCOO)6]n niccolite-like compounds, with MII = CoII (2) and MnII (3) ions, has been carried out using neutron diffraction and compared with the previously reported FeII-containing compound (1). The inclusion of two different metallic atoms into the niccolite-like structure framework leads to the formation of isostructural compounds with very different magnetic behaviors due to the compensation or not of the different spins involved in each lattice. Below TN, the magnetic order in these compounds varies from ferrimagnetic behavior for 1 and 2 to an antiferromagnetic behavior with a weak spin canting for 3. Structure refinements of 2 and 3 at low temperature (45 K) have been carried out combining synchrotron X-ray and high-resolution neutron diffraction in a multipattern approach. The magnetic structures have been determined from the difference patterns between the neutron data in the paramagnetic and the magnetically ordered regions. These difference patterns have been analyzed using a simulated annealing protocol and symmetry analysis techniques. The obtained magnetic structures have been further rationalized by means of ab initio DFT calculations. The direction of the magnetic moment of each compound has been determined. The easy axis of the MII for compound 1 (FeII) is along the c axis; for compound 2 (CoII), the moments are mainly within the ab plane; finally, for compound 3 (MnII), the calculations show that the moments have components both in the ab plane and along the c axis.

6.
Inorg Chem ; 55(22): 11760-11769, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27805387

RESUMO

We report herein on the magnetic properties and structures of orthorhombic Li2M(SO4)2 (M = Co, Fe) and their oxidized phases LixFe(SO4)2 (x = 1, 1.5), which were previously studied as potential cathode materials for Li-ion batteries. The particular structure of these orthorhombic compounds (space group Pbca) consists of a three-dimensional network of isolated MO6 octahedra enabling solely super-super-exchange interactions between transition metals. We studied the magnetic properties of these phases via temperature-dependent susceptibility measurements and applied neutron powder diffraction experiments to solve their magnetic structures. All compounds present an antiferromagnetic long-range ordering of the magnetic spins below their Néel temperature. Their magnetic structures are collinear and follow a spin sequence (+ + - - - - + +), with the time reversal associated with the inversion center, a characteristic necessary for a linear magneto-electric effect. We found that the orientation of the magnetic moments varies with the nature of M. While Li2Co(SO4)2 and Li1Fe(SO4)2 adopt the magnetic space group Pb'c'a', the magnetic space group for Li2Fe(SO4)2 and Li1.5Fe(SO4)2 is P1121'/a, which might hint for a possible monoclinic distortion of their nuclear structure. Moreover we compared the orthorhombic phases to their monoclinic counterparts as well as to the isostructural orthorhombic Li2Ni(SO4)2 compound. Finally, we show that this possible magneto-electric feature is driven by the topology of the magnetic interactions.

7.
Dalton Trans ; 44(31): 14130-8, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26174497

RESUMO

We have reinvestigated the crystal structure of the low-dimensional fluoride ß-FeF3(H2O)2·H2O using high resolution neutron and X-ray diffraction data. Moreover we have studied the magnetic behavior of this material combining medium resolution and high flux neutron powder diffraction together with magnetic susceptibility measurements. This fluoride compound exhibits vertex-shared 1D Fe(3+) octahedral chains, which are extended along the c-axis. The magnetic interactions between adjacent chains involve super-superexchange interactions via an extensive network of hydrogen bonds. This interchain hydrogen bonding scheme is sufficiently strong to induce a long range magnetic order appearing below T = 20(1) K. The magnetic order is characterized by the propagation vector k = (0, 0, 1/2), giving rise to a strictly antiferromagnetic structure where the Fe(3+) spins are lying within the ab-plane. Magnetic exchange couplings extracted from magnetization measurements are found to be J∥/kb = -18 K and J⊥/kb = -3 K. These values are in good agreement with the neutron diffraction data, which show that the system became antiferromagnetically ordered at ca. TN = 20(1) K.

8.
Faraday Discuss ; 179: 227-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25865697

RESUMO

Understanding the crystallization of enantiomorphically pure systems can be relevant to diverse fields such as the study of the origins of life or the purification of racemates. Here we report on polycrystalline epitaxial thin films of quartz on Si substrates displaying two distinct types of chiral habits that never coexist in the same film. We combine Atomic Force Microscopy (AFM) analysis and computer-assisted crystallographic calculations to make a detailed study of these habits of quartz. By estimating the surface energies of the observed crystallites we argue that the films are enantiomorphically pure and we briefly outline a possible mechanism to explain the habit and chiral selection in this system.


Assuntos
Nanoestruturas/química , Quartzo/química , Cristalização , Microscopia de Força Atômica , Silício/química , Propriedades de Superfície
9.
Chem Commun (Camb) ; 51(20): 4164-7, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25503642

RESUMO

Complex 3D macrostructured nanoparticles are transformed from amorphous silica into pure polycrystalline α-quartz using catalytic quantities of alkaline earth metals as devitrifying agent. Walls as thin as 10 nm could be crystallized without losing the architecture of the particles. The roles of cation size and the mol% of the incorporated devitrifying agent in crystallization behavior are studied, with Mg(2+), Ca(2+), Sr(2+) and Ba(2+) all producing pure α-quartz under certain conditions.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Cristalização , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Porosidade
10.
Inorg Chem ; 53(11): 5674-83, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24832918

RESUMO

A novel cobalt(II) complex of formula [Co2(cbut)(H2O)3]n (1) (H4cbut = 1,2,3,4-cyclobutanetetracarboxylic acid) has been synthesized under hydrothermal conditions and its crystal structure has been determined by means of synchrotron radiation and neutron powder diffraction. The crystal structure of 1 consists of layers of cobalt(II) ions extending in the bc-plane which are pillared along the crystallographic a-axis through the skeleton of the cbut(4-) ligand. Three crystallographically independent cobalt(II) ions [Co(1), Co(2), and Co(3)] occur in 1. They are all six-coordinate with four carboxylate-oxygens [Co(1)-Co(3)] and two cis-[Co(1)] or trans-water molecules [Co(2) and Co(3)] building distorted octahedral surroundings. Regular alternating double oxo(carboxylate) [between Co(1) and Co(1a)] and oxo(carboxylate) plus one aqua and a syn-syn carboxylate bridges [between Co(1) and Co(2)] occur along the crystallographic b-axis, the values of the cobalt-cobalt separation being 3.1259(8) and 3.1555(6) Å, respectively. These chains are connected to the Co(3) atoms through the OCO carboxylate along the [011] direction leading to the organic-inorganic bc-layers with Co(1)-OCO(anti-syn)-Co(3) and Co(2)-OCO(anti-anti)-Co(3) distances of 5.750(2) and 4.872(1) Å. The shortest interlayer cobalt-cobalt separation through the cbut(4-) skeleton along the crystallographic a-axis is 7.028(2) Å. Variable-temperature magnetic susceptibility measurements show the occurrence of antiferromagnetic ordering with a Néel temperature of 5.0 K, followed by a field-induced ferromagnetic transition under applied dc fields larger than 1500 Oe. The magnetic structure of 1 has been elucidated at low temperatures in zero field by neutron powder diffraction measurements and was found to be formed by ferromagnetic chains running along the b-axis which are antiferromagnetically coupled with the Co(3) ions through the c-axis giving rise to noncompensated magnetic moments within each bc-layer (ferrimagnetic plane). The occurrence of an antitranslation operation between these layers produces a weak interlayer antiferromagnetic coupling along the a-axis which is overcome by dc fields greater than 1500 Oe resulting in a phase transition toward a ferromagnetic state (metamagnetic behavior).

11.
Inorg Chem ; 52(21): 12818-27, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24131172

RESUMO

The exchange mechanism and magnetic structure of the organic-inorganic layered molecule-based magnet [Co2(bta)]n (1) (H4bta =1,2,4,5-benzenetetracarboxylic acid) have been investigated through variable-temperature magnetic susceptibility measurements and supported with a series of neutron diffraction experiments. Cryomagnetic studies have shown an antiferromagnetic ordering at a transition temperature of 16 K that is followed by the appearance of a weak ferromagnetism below 11 K. The weak antiferromagnetic interlayer interaction plays an important role in this system in spite of the long interlayer separation. A ferromagnetic ordering is induced by applied magnetic fields greater than 1800 G (metamagnetic behavior), and a slow magnetic relaxation from this ferromagnetic phase to the antiferromagnetic one is observed. The magnetic structure of 1 has been elucidated at low temperatures in zero field by neutron powder diffraction measurements and was found to be of antiferromagnetic nature with the local cobalt(II) spins (magnetic moments) being aligned ferromagnetically in the ac plane and antiferromagnetically coupled along the crystallographic b axis. No evidence for a long-range spontaneous ferromagnetic component below 11 K was observed in the neutron experiment.

12.
Inorg Chem ; 52(18): 10456-66, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23978225

RESUMO

New materials initially designed for battery electrodes are often of interest for magnetic study, because their chemical compositions include 3d transition metals. We report here on the magnetic properties of marinite phases Li2M(SO4)2 (M = Fe, Co, Mn) and Li1Fe(SO4)2, which all order antiferromagnetically at low temperature. From neutron powder diffraction, we propose a model for their ground-state magnetic structures. The magnetism of marinite Li2M(SO4)2 compounds unambiguously results from super-super-exchange interactions; therefore, these materials can be considered as a model case for which the Goodenough-Kanamori-Anderson rules can be tested.

13.
J Am Chem Soc ; 134(48): 19772-81, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23130914

RESUMO

Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.

14.
Inorg Chem ; 50(15): 7129-35, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21736295

RESUMO

Neutron diffraction techniques have been used to determine the low temperature crystal structure and to shed light on the magnetic behavior of the [Mn(3)(suc)(2)(ina)(2)](n) (suc = succinate and ina = isonicotinate) complex. The ferromagnetic signal observed below T(c) ≈ 5 K in this compound is due to a noncompensation of homometallic spins in the 3D framework. The Mn(II) magnetic moments obtained from neutron diffraction refinements are slightly lower than those observed for isolated Mn(II) ions; this can be due to covalent spin delocalization or geometrical magnetic fluctuations. A small discrepancy between the value of the magnetic moments of each Mn(II) site is also observed [Mn(1) 4.1(2) µ(B) and the Mn(2) 3.9(1) µ(B)]. These differences between the theoretical and observed manganese magnetic moments are not unexpected in this large spin metal complex, and qualitatively reasonable given the synergistic interaction between the metal ions through oxo-bridge. The competition among different interactions, principally those covalent through organic ligands and dipolar interaction, drive to a final 3D ferrimagnetic order.

15.
J Phys Condens Matter ; 23(32): 325402, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21795779

RESUMO

The Sc(2)(WO(4))(3)-type phase (Pbcn) of Y(2)(MoO(4))(3), Er(2)(MoO(4))(3) and Lu(2)(MoO(4))(3) has been prepared by the conventional solid-state synthesis with preheated oxides and the negative thermal expansion (NTE) has been investigated along with an exhaustive structural study, after water loss. Their crystal structures have been refined using the neutron and x-ray powder diffraction data of dehydrated samples from 150 to 400 K. The multi-pattern Rietveld method, using atomic displacements with respect to a known structure as parameters to refine, has been applied to facilitate the interpretation of the NTE behavior. Polyhedral distortions, transverse vibrations of A· · ·O-Mo (A = Y and rare earths) binding oxygen atoms, non-bonded distances A· · ·Mo and atomic displacements from the high temperature structure, have been evaluated as a function of the temperature and the ionic radii.

16.
J Am Chem Soc ; 133(11): 4053-61, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21351770

RESUMO

Porous mixed-valent manganese oxides are a group of multifunctional materials that can be used as molecular sieves, catalysts, battery materials, and gas sensors. However, material properties and thus activity can vary significantly with different synthesis methods or process conditions, such as temperature and time. Here, we report on a new synthesis route for MnO(2) and LaSr-doped molecular sieve single crystalline nanowires based on a solution chemistry methodology combined with the use of nanoporous polymer templates supported on top of single crystalline substrates. Because of the confined nucleation in high aspect ratio nanopores and of the high temperatures attained, new structures with novel physical properties have been produced. During the calcination process, the nucleation and crystallization of ε-MnO(2) nanoparticles with a new hexagonal structure is promoted. These nanoparticles generated up to 30 µm long and flexible hexagonal nanowires at mild growth temperatures (T(g) = 700 °C) as a consequence of the large crystallographic anisotropy of ε-MnO(2). The nanocrystallites of MnO(2) formed at low temperatures serve as seeds for the growth of La(0.7)Sr(0.3)MnO(3) nanowires at growth temperatures above 800 °C, through the diffusion of La and Sr into the empty 1D-channels of ε-MnO(2). Our particular growth method has allowed the synthesis of single crystalline molecular sieve (LaSr-2 × 4) monoclinic nanowires with composition La(0.7)Sr(0.3)MnO(3) and with ordered arrangement of La(3+) and Sr(2+) cations inside the 1D-channels. These nanowires exhibit ferromagnetic ordering with strongly enhanced Curie temperature (T(c) > 500 K) that probably results from the new crystallographic order and from the mixed valence of manganese.

17.
Inorg Chem ; 48(16): 7659-66, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19591438

RESUMO

Despite being proven to be a good lithium-ion conductor 30 years ago, the crystal structure of the ramsdellite-like Li(2)Ti(3)O(7) has remained uncertain, with two potential models for locating the lithium ions in the structure. Although the model presently accepted states that both lithium and titanium occupy the octahedral sites in the framework, evidence against this model are provided by (6)Li and (7)Li MAS NMR spectroscopy. Thus, about 14% of these octahedral positions are empty since no lithium in octahedral coordination is present in the material. When Li(2)Ti(3)O(7)-ramsdellite is treated with nitric acid a complete exchange of lithium by protons is produced to yield H(2)Ti(3)O(7). The crystal structure of this proton-exchanged ramsdellite has been re-examined combining X-ray diffraction (XRD), neutron powder diffraction (NPD), and spectroscopic ((1)H and (7)Li MAS NMR) techniques. Two kinds of protons are present in this material with different acidity because of the local environments of oxygen atoms to which protons are bonded, namely, low acidic protons strongly bonded to highly charged oxygen atoms (coordinated to two Ti(4+) and a vacancy); and protons linked to low charged oxygen atoms (bonded to three Ti(4+) ions) which will display a more acidic behavior. H(2)Ti(3)O(7) absorbs water; proton mobility is enhanced by the presence of absorbed water, giving rise to a large improvement of its electrical conductivity in wet atmospheres. Thus, it seems that water molecules enter the tunnels in the structure providing a vehicle mechanism for proton diffusion.

18.
Inorg Chem ; 48(14): 6526-33, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19537811

RESUMO

The use of nitrite sodalite as a precursor to prepare new blue ultramarine analogs has been investigated. The encapsulation of the chromophores inside of beta cages was achieved by heating the nitrite sodalite precursor with a mixture of sodium carbonate, sulfur, and a reducing agent at about 1000 K under airtight conditions. The obtained new blue ultramarine-type material was characterized by means of X-ray and neutron powder diffraction, transmission electron microscopy, 29Si magic-angle-spinning NMR, IR, Raman, and diffuse reflectance spectroscopies. Thermogravimetric analysis and magnetic measurements were performed in order to determine water and chromophore contents, respectively. On the basis of the spectroscopic results and Rietveld analysis of neutron powder data, the beta cage filling was found to be yellow S2(-) and blue S3(-) chromophores along with carbonate anions. The determined chromophore concentration, about 0.31 mol per formula unit, is enough to have greenish-blue ultramarines, which proves that ultramarine analogs can be obtained from nitrite sodalite.

19.
Acta Crystallogr B ; 64(Pt 6): 713-24, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19029701

RESUMO

The crystal structure of a new phase consisting of the inclusion of the hyperpolarizable molecule p-N,N-dimethylnitroaniline (dimethyl-para-nitroaniline or dmpNA) in the large-pore zeolite mordenite (MOR) has been determined from high-resolution synchrotron powder diffraction at 300 and 90 K. The unit-cell parameters and space group at 300 K are similar to those of as-synthesized mordenite. The crystallographic study indicates that the MOR straight channels are almost fully loaded with molecules that are disordered over eight symmetry-related sites. As expected, the molecules are located in the large 12-membered ring channel, at the intersection with the secondary eight-membered channel with which they might form hydrogen bonds. The elongation axes (and then the dipole moments) of the molecules are slightly tilted (28.57 degrees ) from [001]. The configuration found suggests an interaction of dmpNA with framework O atoms through its methyl groups.


Assuntos
Silicatos de Alumínio/química , Compostos de Anilina/química , Síncrotrons , Zeolitas/química , Modelos Moleculares , Difração de Pó , Temperatura
20.
Chemistry ; 14(34): 10829-38, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18924184

RESUMO

The crystal structures of KMn(4)(PO(4))(3) and KCo(4)(PO(4))(3) have been determined by neutron diffraction at room temperature. Both compounds are orthorhombic with similar cell parameters, but they crystallize in different space groups, Pnam for the Mn phosphate and Pnnm for the Co analogue. On the basis of the metal cation polyhedra and their connectivity, the crystal structures have been rationalised, which allow interpretation of the main magnetic interactions between them. Magnetic measurements show ferromagnetic behaviour for the Co compound, whereas in the Mn derivative antiferromagnetism is observed. Both magnetic structures are described and qualitatively analysed in terms of superexchange and super-superexchange interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA