Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 23: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31641529

RESUMO

Background: Collagen-based scaffolds reinforced with hydroxyapatite (HA) are an attractive choice for bone tissue engineering because their composition mimics that of bone. We previously reported the development of compression-molded collagen-HA scaffolds that exhibited high porosity, interconnected pores, and mechanical properties that were well-suited for surgical handling and fixation. The objective of this study was to investigate these novel collagen-HA scaffolds in combination with human adipose-derived stem cells (hASCs) as a template for bone formation in a subcutaneous athymic mouse model. Methods: Collagen-HA scaffolds and collagen-only scaffolds were fabricated as previously described, and a clinically approved bone void filler was used as a control for the material. Constructs were seeded with hASCs and were pre-treated with either control or osteogenic media. A cell-free group was also included. Scaffolds were implanted subcutaneously in the backs of athymic nude mice for 8 weeks. Mineral deposition was quantified via micro-computed tomography. Histological and immunofluorescence images of the explants were used to analyze their vascular invasion, remodeling and cellularity. Results: Cell-free collagen-HA scaffolds and those that were pre-seeded with osteogenically differentiated hASCs supported mineral deposition and vascular invasion at comparable rates, while cell-seeded constructs treated with the control medium showed lower mineralization after implantation. HA-reinforcement allowed collagen constructs to maintain their shape, provided improved cell-tissue-scaffold integration, and resulted in a more organized tissue when pre-treated in an osteogenic medium. Scaffold type and pre-treatment also determined osteoclast activity and therefore potential remodeling of the constructs. Conclusions: The results of this study cumulatively indicate that treatment medium and scaffold composition direct mineralization and angiogenic tissue formation in an ectopic model. The data suggest that it may be necessary to match the scaffold with a particular cell type and cell-specific pre-treatment to achieve optimal bone formation.

2.
J Med Imaging (Bellingham) ; 6(1): 013501, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30840726

RESUMO

Quantitative material decomposition of multiple mixed, or spatially coincident, contrast agent (gadolinium and iodine) and tissue (calcium and water) compositions is demonstrated using photon-counting spectral computed tomography (CT). Material decomposition is performed using constrained maximum likelihood estimation (MLE) in the image domain. MLE is calibrated by multiple linear regression of all pure material compositions, which exhibits a strong correlation ( R 2 > 0.91 ) between the measured x-ray attenuation in each photon energy bin and known concentrations in the calibration phantom. Material decomposition of mixed compositions in the sample phantom provides color material concentration maps that clearly identify and differentiate each material. The measured area under the receiver operating characteristic curve is > 0.95 , indicating highly accurate material identification. Material decomposition also provides accurate quantitative estimates of material concentrations in mixed compositions with a root-mean-squared error < 12 % of the maximum concentration for each material. Thus, photon-counting spectral CT enables quantitative molecular imaging of multiple spatially coincident contrast agent (gadolinium and iodine) and tissue (calcium and water) compositions, which is not possible with current clinical molecular imaging modalities, such as nuclear imaging and magnetic resonance imaging.

3.
Nanoscale ; 11(10): 4345-4354, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30793721

RESUMO

Biodegradable materials, such as collagen scaffolds, are used extensively in clinical medicine for tissue regeneration and/or as an implantable drug delivery vehicle. However, available methods to study biomaterial degradation are typically invasive, destructive, and/or non-volumetric. Therefore, the objective of this study was to investigate a new method for nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation. Gold nanoparticles (Au NPs) were covalently conjugated to collagen fibrils during scaffold preparation to enable contrast-enhanced imaging of collagen scaffolds. The X-ray attenuation of as-prepared scaffolds increased linearly with increased Au NP concentration such that ≥60 mM Au NPs provided sufficient contrast to measure scaffold degradation. Collagen scaffold degradation kinetics were measured to increase during in vitro enzymatic degradation in media with an increased concentration of collagenase. The scaffold degradation kinetics measured by micro-CT exhibited lower variability compared with gravimetric measurement and were validated by measurement of the release of Au NPs from the same samples by optical spectroscopy. Thus, Au NPs and CT synergistically enabled nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation.


Assuntos
Colágeno/química , Ouro/química , Nanopartículas Metálicas/química , Proteólise , Tecidos Suporte/química , Microtomografia por Raio-X
4.
ACS Nano ; 13(2): 1097-1106, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30633498

RESUMO

Polymers with superior mechanical properties are desirable in many applications. In this work, polyethylene (PE) films reinforced with exfoliated thermally reduced graphene oxide (TrGO) fabricated using a roll-to-roll hot-drawing process are shown to have outstanding mechanical properties. The specific ultimate tensile strength and Young's modulus of PE/TrGO films increased monotonically with the drawing ratio and TrGO filler fraction, reaching up to 3.2 ± 0.5 and 109.3 ± 12.7 GPa, respectively, with a drawing ratio of 60× and a very low TrGO weight fraction of 1%. These values represent by far the highest reported to date for a polymer/graphene composite. Experimental characterizations indicate that as the polymer films are drawn, TrGO fillers are exfoliated, which is further confirmed by molecular dynamics (MD) simulations. Exfoliation increases the specific area of the TrGO fillers in contact with the PE matrix molecules. Molecular dynamics simulations show that the PE-TrGO interaction is stronger than the PE-PE intermolecular van der Waals interaction, which enhances load transfer from PE to TrGO and leverages the ultrahigh mechanical properties of TrGO.

5.
Acta Biomater ; 82: 122-132, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30316022

RESUMO

A preclinical murine model of hydroxyapatite (HA) breast microcalcifications (µcals), which are an important clinical biomarker for breast cancer detection, was used to investigate the independent effects of high affinity bisphosphonate (BP) ligands and a polyethylene glycol (PEG) spacer on targeted delivery of gold nanoparticles (Au NPs) for contrast-enhanced radiographic detection. The addition of BP ligands to PEGylated Au NPs (BP-PEG-Au NPs) resulted in five-fold greater binding affinity for targeting HA µcals, as expected, due to the strong binding affinity of BP ligands for calcium. Therefore, BP-PEG-Au NPs were able to target HA µcals in vivo after intramammary delivery, which enabled contrast-enhanced radiographic detection of µcals in both normal and radiographically dense mammary tissues similar to previous results for BP-Au NPs, while PEG-Au NPs did not. The addition of a PEG spacer between the BP targeting ligand and Au NP surface enabled improved in vivo clearance. PEG-Au NPs and BP-PEG-Au NPs were cleared from all mammary glands (MGs) and control MGs, respectively, within 24-48 h after intramammary delivery, while BP-Au NPs were not. PEGylated Au NPs were slowly cleared from MGs by lymphatic drainage and accumulated in the spleen. Histopathology revealed uptake of PEG-Au NPs and BP-PEG-Au NPs by macrophages in the spleen, liver, and MGs; there was no evidence of toxicity due to the accumulation of NPs in organs and tissues compared with untreated controls for up to 28 days after delivery. STATEMENT OF SIGNIFICANCE: Au NP imaging probes and therapeutics are commonly surface functionalized with PEG and/or high affinity targeting ligands for delivery. However, direct comparisons of PEGylated Au NPs with and without a targeting ligand, or ligand-targeted Au NPs with and without a PEG spacer, on in vivo targeting efficiency, biodistribution, and clearance are limited. Therefore, the results of this study are important for the rationale design of targeted NP imaging probes and therapeutics, including the translation of BP-PEG-Au NPs which enable improved sensitivity and specificity for the radiographic detection of abnormalities (e.g., µcals) in women with dense breast tissue.


Assuntos
Calcinose , Difosfonatos , Sistemas de Liberação de Medicamentos , Ouro , Neoplasias Mamárias Experimentais , Nanopartículas Metálicas , Animais , Calcinose/diagnóstico por imagem , Calcinose/tratamento farmacológico , Calcinose/metabolismo , Calcinose/patologia , Difosfonatos/química , Difosfonatos/farmacocinética , Difosfonatos/farmacologia , Feminino , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia
6.
Biomed Opt Express ; 9(4): 1613-1629, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29675306

RESUMO

Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a [Formula: see text]-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples.

7.
J Tissue Eng Regen Med ; 12(1): e541-e549, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27690279

RESUMO

Key aspects of native endochondral bone development and fracture healing can be mimicked in mesenchymal stem cells (MSCs) through standard in vitro chondrogenic induction. Exploiting this phenomenon has recently emerged as an attractive technique to engineer bone tissue, however, relatively little is known about the best conditions for doing so. The objective of the present study was to compare the bone-forming capacity and angiogenic induction of hypertrophic cell constructs containing human adipose-derived stem cells (hASCs) primed for chondrogenesis in two different culture systems: high-density pellets and alginate bead hydrogels. The hASC constructs were subjected to 4 weeks of identical chondrogenic induction in vitro, encapsulated in an agarose carrier, and then implanted subcutaneously in immune-compromised mice for 8 weeks to evaluate their endochondral potential. At the time of implantation, both pellets and beads expressed aggrecan and type II collagen, as well as alkaline phosphatase (ALP) and type X collagen. Interestingly, ASCs in pellets formed a matrix containing higher glycosaminoglycan and collagen contents than that in beads, and ALP activity per cell was higher in pellets. However, after 8 weeks in vivo, pellets and beads induced an equivalent volume of mineralized tissue and a comparable level of vascularization. Although osteocalcin and osteopontin-positive osteogenic tissue and new vascular growth was found within both types of constructs, all appeared to be better distributed throughout the hydrogel beads. The results of this ectopic model indicate that hydrogel culture may be an attractive alternative to cell pellets for bone tissue engineering via the endochondral pathway. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Alginatos/química , Técnicas de Cultura de Células/métodos , Osteogênese , Animais , Biomarcadores , Condrogênese , Feminino , Humanos , Hipertrofia , Implantes Experimentais , Camundongos
8.
Bone ; 105: 67-74, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28826844

RESUMO

Small animal models, and especially transgenic models, have become widespread in the study of bone mechanobiology and metabolic bone disease, but test methods for measuring fracture toughness on multiple replicates or at multiple locations within a single small animal bone are lacking. Therefore, the objective of this study was to develop a method to measure cortical bone fracture toughness in multiple specimens and locations along the diaphysis of small animal bones. Arc-shaped tension specimens were prepared from the mid-diaphysis of rabbit ulnae and loaded to failure to measure the radial fracture toughness in multiple replicates per bone. The test specimen dimensions, crack length, and maximum load met requirements for measuring the plane strain fracture toughness. Experimental groups included a control group, bisphosphonate treatment group, and an ex vivo deproteinization treatment following bisphosphonate treatment (5 rabbits/group and 15 specimens/group). The fracture toughness of ulnar cortical bone from rabbits treated with zoledronic acid for six months exhibited no difference compared with the control group. Partially deproteinized specimens exhibited significantly lower fracture toughness compared with both the control and bisphosphonate treatment groups. The deproteinization treatment increased tissue mineral density (TMD) and resulted in a negative linear correlation between the measured fracture toughness and TMD. Fracture toughness measurements were repeatable with a coefficient of variation of 12-16% within experimental groups. Retrospective power analysis of the control and deproteinization treatment groups indicated a minimum detectable difference of 0.1MPa·m1/2. Therefore, the overall results of this study suggest that arc-shaped tension specimens offer an advantageous new method for measuring the fracture toughness in small animal bones.


Assuntos
Osso Cortical/fisiopatologia , Difosfonatos/uso terapêutico , Fraturas Ósseas/tratamento farmacológico , Fraturas Ósseas/fisiopatologia , Proteínas/isolamento & purificação , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Osso Cortical/efeitos dos fármacos , Osso Cortical/patologia , Difosfonatos/farmacologia , Imagem Tridimensional , Masculino , Coelhos , Ulna/diagnóstico por imagem , Ulna/efeitos dos fármacos , Ulna/fisiopatologia , Microtomografia por Raio-X
9.
Med Phys ; 44(10): 5187-5197, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28681402

RESUMO

PURPOSE: Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. METHODS: Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. RESULTS: Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in magnitude by comparison. The material basis matrix calibration was more sensitive to changes in the calibration methods than the scaling factor calibration. The material basis matrix calibration significantly influenced both the quantitative and spatial accuracy of material decomposition, while the scaling factor calibration influenced quantitative but not spatial accuracy. Importantly, the median RMSE of material decomposition was as low as ~1.5 mM (~0.24 mg/mL gadolinium), which was similar in magnitude to that measured by optical spectroscopy on the same samples. CONCLUSION: The accuracy of quantitative material decomposition in photon-counting spectral CT was significantly influenced by calibration methods which must therefore be carefully considered for the intended diagnostic imaging application.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fótons , Tomografia Computadorizada por Raios X , Calibragem , Imagens de Fantasmas , Razão Sinal-Ruído
10.
Nanoscale ; 8(28): 13627-37, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27364973

RESUMO

The interaction of hafnium oxide (HfO2) nanoparticles (NPs) with X-ray and mid-infrared radiation was investigated to assess the potential as a multifunctional diagnostic probe for X-ray computed tomography (CT) and/or mid-infrared biosensing. HfO2 NPs of controlled size were prepared by a sol-gel process and surface functionalized with polyvinylpyrrolidone, resulting in relatively spherical and monodispersed NPs with a tunable mean diameter in the range of ∼7-31 nm. The X-ray attenuation of HfO2 NPs was measured over 0.5-50 mM concentration and compared with Au NPs and iodine, which are the most prominent X-ray contrast agents currently used in research and clinical diagnostic imaging, respectively. At clinical CT tube potentials >80 kVp, HfO2 NPs exhibited superior or similar X-ray contrast compared to Au NPs, while both exhibited significantly greater X-ray contrast compared to iodine, due to the favorable location of the k-shell absorption edge for hafnium and gold. Moreover, energy-dependent differences in X-ray attenuation enabled simultaneous quantitative molecular imaging of each agent using photon-counting spectral (multi-energy) CT. HfO2 NPs also exhibited a strong mid-infrared absorption in the Reststrahlen band from ∼250-800 cm(-1) and negative permittivity below 695 cm(-1), which can enable development of mid-infrared biosensors and contrast agents, leveraging surface enhanced mid-infrared and/or phonon polariton absorption.


Assuntos
Técnicas Biossensoriais , Meios de Contraste , Háfnio , Nanopartículas Metálicas , Óxidos , Tomografia Computadorizada por Raios X , Raios X
11.
J Biomed Mater Res A ; 104(9): 2178-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27112109

RESUMO

Acellular hydroxyapatite (HA) reinforced collagen scaffolds were previously reported to induce angiogenesis and osteogenesis after ectopic implantation but the effect of the HA volume fraction was not investigated. Therefore, the objective of this study was to investigate the effect of HA volume fraction on in vivo angiogenesis and osteogenesis in acellular collagen scaffolds containing 0, 20, and 40 vol % HA after subcutaneous ectopic implantation for up to 12 weeks in mice. Endogenous cell populations were able to completely and uniformly infiltrate the entire scaffold within 6 weeks independent of the HA content, but the cell density was increased in scaffolds containing HA versus collagen alone. Angiogenesis, remodeling of the original scaffold matrix, mineralization, and osteogenic gene expression were evident in scaffolds containing HA, but were not observed in collagen scaffolds. Moreover, HA promoted a dose-dependent increase in measured vascular density, cell density, matrix deposition, and mineralization. Therefore, the results of this study suggest that HA promoted the recruitment and differentiation of endogenous cell populations to support angiogenic and osteogenic activity in collagen scaffolds after subcutaneous ectopic implantation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2178-2188, 2016.


Assuntos
Colágeno/química , Durapatita/química , Regulação da Expressão Gênica , Modelos Biológicos , Neovascularização Fisiológica , Osteogênese , Tecidos Suporte/química , Animais , Feminino , Camundongos , Camundongos Nus
12.
Adv Drug Deliv Rev ; 99(Pt A): 12-27, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26482186

RESUMO

The high concentration of mineral present in bone and pathological calcifications is unique compared with all other tissues and thus provides opportunity for targeted delivery of pharmaceutical drugs, including radiosensitizers and imaging probes. Targeted delivery enables accumulation of a high local dose of a therapeutic or imaging contrast agent to diseased bone or pathological calcifications. Bisphosphonates (BPs) are the most widely utilized bone-targeting ligand due to exhibiting high binding affinity to hydroxyapatite mineral. BPs can be conjugated to an agent that would otherwise have little or no affinity for the sites of interest. This article summarizes the current state of knowledge and practice for the use of BPs as ligands for targeted delivery to bone and mineral deposits. The clinical history of BPs is briefly summarized to emphasize the success of these molecules as therapeutics for metabolic bone diseases. Mechanisms of binding and the relative binding affinity of various BPs to bone mineral are introduced, including common methods for measuring binding affinity in vitro and in vivo. Current research is highlighted for the use of BP ligands for targeted delivery of BP conjugates in various applications, including (1) therapeutic drug delivery for metabolic bone diseases, bone cancer, other bone diseases, and engineered drug delivery platforms; (2) imaging probes for scintigraphy, fluorescence, positron emission tomography, magnetic resonance imaging, and computed tomography; and (3) radiotherapy. Last, and perhaps most importantly, key structure-function relationships are considered for the design of drugs with BP ligands, including the tether length between the BP and drug, the size of the drug, the number of BP ligands per drug, cleavable tethers between the BP and drug, and conjugation schemes.


Assuntos
Osso e Ossos/metabolismo , Difosfonatos/administração & dosagem , Sistemas de Liberação de Medicamentos , Animais , Difosfonatos/química , Difosfonatos/farmacocinética , Desenho de Drogas , Humanos , Ligantes , Minerais/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-25959510

RESUMO

Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as accurate assays of tissue properties. Human trabecular bone specimens from the femoral neck (n = 3), greater trochanter (n = 6), and lumbar vertebra (n = 1) of eight different donors were scanned by µ-CT and converted to voxel-based finite element models. Unconfined uniaxial compression and shear loading were simulated for each of three different constitutive models: a principal strain-based model, Drucker-Lode, and Drucker-Prager. The latter was applied with both infinitesimal and finite kinematics. Apparent yield strains exhibited minimal dependence on the constitutive model, differing by at most 16.1%, with the kinematic formulation being influential in compression loading. At the tissue level, the quantities and locations of yielded tissue were insensitive to the constitutive model, with the exception of the Drucker-Lode model, suggesting that correlation of microdamage with computational models does not improve the ability to discriminate between constitutive laws. Taken together, it is unlikely that a tissue constitutive model can be fully validated from apparent-level experiments alone, as the calculations are too insensitive to identify differences in the outcomes. Rather, any asymmetric criterion with a valid yield surface will likely be suitable for most trabecular bone models.


Assuntos
Simulação por Computador , Colo do Fêmur/fisiologia , Fêmur/fisiologia , Vértebras Lombares/fisiologia , Fenômenos Biomecânicos , Força Compressiva , Análise de Elementos Finitos , Humanos , Dinâmica não Linear
14.
J Biomech ; 48(15): 4087-92, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26482732

RESUMO

Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.


Assuntos
Colágeno/química , Animais , Anisotropia , Transporte Biológico , Bovinos , Colágeno/fisiologia , Eletroforese em Gel de Ágar , Fibrocartilagem/química , Modelos Biológicos , Fenazinas/química , Proteoglicanas/química , Pironina/química , Tendões/química , Tendões/fisiologia
15.
ACS Nano ; 9(9): 8923-32, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26308767

RESUMO

Breast density reduces the accuracy of mammography, motivating methods to improve sensitivity and specificity for detecting abnormalities within dense breast tissue, but preclinical animal models are lacking. Therefore, the objectives of this study were to investigate a murine model of radiographically dense mammary tissue and contrast-enhanced X-ray detection of microcalcifications in dense mammary tissue by targeted delivery of bisphosphonate-functionalized gold nanoparticles (BP-Au NPs). Mammary glands (MGs) in the mouse mammary tumor virus - polyomavirus middle T antigen (MMTV-PyMT or PyMT) model exhibited greater radiographic density with age and compared with strain- and age-matched wild-type (WT) controls at 6-10 weeks of age. The greater radiographic density of MGs in PyMT mice obscured radiographic detection of microcalcifications that were otherwise detectable in MGs of WT mice. However, BP-Au NPs provided enhanced contrast for the detection of microcalcifications in both radiographically dense (PyMT) and WT mammary tissues as measured by computed tomography after intramammary delivery. BP-Au NPs targeted microcalcifications to enhance X-ray contrast with surrounding mammary tissue, which resulted in improved sensitivity and specificity for detection in radiographically dense mammary tissues.


Assuntos
Calcinose/diagnóstico , Meios de Contraste/administração & dosagem , Glândulas Mamárias Humanas/ultraestrutura , Nanopartículas Metálicas/administração & dosagem , Radiografia , Animais , Calcinose/patologia , Meios de Contraste/química , Difosfonatos/administração & dosagem , Difosfonatos/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Camundongos
16.
Nanoscale ; 7(15): 6545-55, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25790032

RESUMO

Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with (14)C, with a final activity of 0.097 nCi mg(-1) of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.


Assuntos
Sistemas de Liberação de Medicamentos , Ferro/química , Nanopartículas Metálicas/química , Óxidos/química , Animais , Carbono/química , Ácidos Carboxílicos/química , Linhagem Celular , Análise de Fourier , Hidrodinâmica , Luz , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Nanotecnologia , Poliaminas/química , Espalhamento de Radiação , Silício/química , Propriedades de Superfície , Distribuição Tecidual
17.
Acta Biomater ; 17: 16-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644451

RESUMO

Hydroxyapatite (HA) reinforced collagen scaffolds have shown promise for synthetic bone graft substitutes and tissue engineering scaffolds. Freeze-dried HA-collagen scaffolds are readily fabricated and have exhibited osteogenicity in vivo, but are limited by an inherent scaffold architecture that results in a relatively small pore size and weak mechanical properties. In order to overcome these limitations, HA-collagen scaffolds were prepared by compression molding HA reinforcements and paraffin microspheres within a suspension of concentrated collagen fibrils (∼ 180 mg/mL), cross-linking the collagen matrix, and leaching the paraffin porogen. HA-collagen scaffolds exhibited an architecture with high porosity (85-90%), interconnected pores ∼ 300-400 µm in size, and struts ∼ 3-100 µm in thickness containing 0-80 vol% HA whisker or powder reinforcements. HA reinforcement enabled a compressive modulus of up to ∼ 1 MPa, which was an order of magnitude greater than unreinforced collagen scaffolds. The compressive modulus was also at least one order of magnitude greater than comparable freeze-dried HA-collagen scaffolds and two orders of magnitude greater than absorbable collagen sponges used clinically. Moreover, scaffolds reinforced with up to 60 vol% HA exhibited fully recoverable elastic deformation upon loading to 50% compressive strain for at least 100,000 cycles. Thus, the scaffold mechanical properties were well-suited for surgical handling, fixation, and bearing osteogenic loads during bone regeneration. The scaffold architecture, permeability, and composition were shown to be conducive to the infiltration and differentiation of adipose-derive stromal cells in vitro. Acellular scaffolds were demonstrated to induce angiogenesis and osteogenesis after subcutaneous ectopic implantation by recruiting endogenous cell populations, suggesting that the scaffolds were osteoinductive.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Durapatita/química , Tecidos Suporte , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Transplante Ósseo , Bovinos , Congelamento , Humanos , Neovascularização Fisiológica , Osteogênese , Parafina/química , Pós , Pressão , Estresse Mecânico , Engenharia Tecidual/métodos
18.
Bone ; 75: 55-61, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25683214

RESUMO

Ulnar and tibial cyclic compression in rats and mice have become the preferred animal models for investigating the effects of mechanical loading on bone modeling/remodeling. Unlike rodents, rabbits provide a larger bone volume and normally exhibit intracortical Haversian remodeling, which may be advantageous for investigating mechanobiology and pharmaceutical interventions in cortical bone. Therefore, the objective of this study was to develop and validate an in vivo rabbit ulnar loading model. Ulnar tissue strains during loading of intact forelimbs were characterized and calibrated to applied loads using strain gauge measurements and specimen-specific finite element models. Periosteal bone formation in response to varying strain levels was measured by dynamic histomorphometry at the location of maximum strain in the ulnar diaphysis. Ulnae loaded at 3000 microstrain did not exhibit periosteal bone formation greater than the contralateral controls. Ulnae loaded at 3500, 4000, and 4500 microstrain exhibited a dose-dependent increase in periosteal mineralizing surface (MS/BS) compared with contralateral controls during the second week of loading. Ulnae loaded at 4500 microstrain exhibited the most robust response with significantly increased MS/BS at multiple time points extending at least 2weeks after loading was ceased. Ulnae loaded at 5250 microstrain exhibited significant woven bone formation. Rabbits required greater strain levels to produce lamellar and woven bone on periosteal surfaces compared with rats and mice, perhaps due to lower basal levels of MS/BS. In summary, bone adaptation during rabbit ulnar loading was tightly controlled and may provide a translatable model for human bone biology in preclinical investigations of metabolic bone disease and pharmacological treatments.


Assuntos
Remodelação Óssea/fisiologia , Modelos Animais , Ulna/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Feminino , Coelhos
19.
Nanomedicine (Lond) ; 10(2): 321-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25600973

RESUMO

Computed tomography enables 3D anatomic imaging at a high spatial resolution, but requires delivery of an x-ray contrast agent to distinguish tissues with similar or low x-ray attenuation. Gold nanoparticles (AuNPs) have gained recent attention as an x-ray contrast agent due to exhibiting a high x-ray attenuation, nontoxicity and facile synthesis and surface functionalization for colloidal stability and targeted delivery. Potential diagnostic applications include blood pool imaging, passive targeting and active targeting, where actively targeted AuNPs could enable molecular imaging by computed tomography. This article summarizes the current state of knowledge for AuNP x-ray contrast agents within a paradigm of key structure-property-function relationships in order to provide guidance for the design of AuNP contrast agents to meet the necessary functional requirements in a particular application. Functional requirements include delivery to the site of interest (e.g., blood, tumors or microcalcifications), nontoxicity during delivery and clearance, targeting or localization at the site of interest and contrast enhancement for the site of interest compared with surrounding tissues. Design is achieved by strategically controlling structural characteristics (composition, mass concentration, size, shape and surface functionalization) for optimized properties and functional performance. Examples from the literature are used to highlight current design trade-offs that exist between the different functional requirements.


Assuntos
Meios de Contraste/química , Diagnóstico por Imagem/métodos , Ouro/química , Nanopartículas Metálicas/química , Tomografia Computadorizada por Raios X/métodos
20.
ACS Nano ; 8(7): 7486-96, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24992365

RESUMO

Microcalcifications are deposits of hydroxyapatite (HA) mineral within breast tissue and the most common abnormality detected by mammography when screening for breast cancer due to exhibiting greater X-ray attenuation than the surrounding tissue. However, the detection of microcalcifications is limited by the sensitivity and specificity of mammography. Therefore, the objective of this study was to investigate in vivo targeted delivery of bisphosphonate-functionalized gold nanoparticles (BP-Au NPs) for contrast-enhanced detection of microcalcifications using computed tomography (CT). A murine model was developed for precise, a priori control over the level of microcalcification burden by injecting varying concentrations of HA crystals in a Matrigel carrier into mammary glands. The measured X-ray attenuation of microcalcifications containing varying HA concentrations demonstrated that the model was reproducible and able to recapitulate varying levels of microcalcification burden, including levels undetectable by CT in the absence of contrast enhancement. After intramammary delivery, BP-Au NPs provided enhanced contrast for the detection of microcalcifications that were otherwise below the CT detection limit. BP-Au NPs targeted microcalcifications due to specific binding to HA crystal surfaces, resulting in contrast between the HA microcalcification site and surrounding tissue which was visibly apparent (∼30-135 HU) within 2 days after delivery. Therefore, targeted BP-Au NPs enabled improved sensitivity and specificity for the detection of microcalcifications.


Assuntos
Calcinose/diagnóstico por imagem , Meios de Contraste/química , Ouro/química , Mamografia/métodos , Nanopartículas Metálicas , Animais , Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste/farmacocinética , Difosfonatos/química , Modelos Animais de Doenças , Feminino , Ouro/farmacocinética , Imagem Tridimensional , Camundongos , Distribuição Tecidual , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA