Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 6(11): 191501, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31827872

RESUMO

Faunal assemblages at hydrothermal vents associated with island-arc volcanism are less well known than those at vents on mid-ocean ridges and back-arc spreading centres. This study characterizes chemosynthetic biotopes at active hydrothermal vents discovered at the Kemp Caldera in the South Sandwich Arc. The caldera hosts sulfur and anhydrite vent chimneys in 1375-1487 m depth, which emit sulfide-rich fluids with temperatures up to 212°C, and the microbial community of water samples in the buoyant plume rising from the vents was dominated by sulfur-oxidizing Gammaproteobacteria. A total of 12 macro- and megafaunal taxa depending on hydrothermal activity were collected in these biotopes, of which seven species were known from the East Scotia Ridge (ESR) vents and three species from vents outside the Southern Ocean. Faunal assemblages were dominated by large vesicomyid clams, actinostolid anemones, Sericosura sea spiders and lepetodrilid and cocculinid limpets, but several taxa abundant at nearby ESR hydrothermal vents were rare such as the stalked barnacle Neolepas scotiaensis. Multivariate analysis of fauna at Kemp Caldera and vents in neighbouring areas indicated that the Kemp Caldera is most similar to vent fields in the previously established Southern Ocean vent biogeographic province, showing that the species composition at island-arc hydrothermal vents can be distinct from nearby seafloor-spreading systems. δ 13C and δ 15N isotope values of megafaunal species analysed from the Kemp Caldera were similar to those of the same or related species at other vent fields, but none of the fauna sampled at Kemp Caldera had δ 13C values, indicating nutritional dependence on Epsilonproteobacteria, unlike fauna at other island-arc hydrothermal vents.

2.
R Soc Open Sci ; 6(9): 190958, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598316

RESUMO

Worldwide coral reefs face catastrophic damage due to a series of anthropogenic stressors. Investigating how coral reefs ecosystems are connected, in particular across depth, will help us understand if deeper reefs harbour distinct communities. Here, we explore changes in benthic community structure across 15-300 m depths using technical divers and submersibles around Bermuda. We report high levels of floral and faunal differentiation across depth, with distinct assemblages occupying each depth surveyed, except 200-300 m, corresponding to the lower rariphotic zone. Community turnover was highest at the boundary depths of mesophotic coral ecosystems (30-150 m) driven largely by taxonomic turnover and to a lesser degree by ordered species loss (nestedness). Our work highlights the biologically unique nature of benthic communities in the mesophotic and rariphotic zones, and their limited connectivity to shallow reefs, thus emphasizing the need to manage and protect deeper reefs as distinct entities.

3.
Mar Environ Res ; 146: 1-11, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30879698

RESUMO

Zooplankton form a trophic link between primary producers and higher trophic levels, and exert significant influence on the vertical transport of carbon through the water column ('biological carbon pump'). Using a MultiNet we sampled and studied mesozooplankton communities (i.e. >0.2 mm) from six locations around Bermuda targeting four depth zones: ∼0-200 m, ∼200-400 m, ∼400-600 m (deep-scattering layer), and ∼600-800 m. Copepoda, our focal taxonomic group, consistently dominated samples (∼80% relative abundance). We report declines in zooplankton and copepod abundance with depth, concurrent with decreases in food availability. Taxonomic richness was lowest at depth and below the deep-scattering layer. In contrast, copepod diversity peaked at these depths, suggesting lower competitive displacement in these more food-limited waters. Finally, omnivory and carnivory, were the dominant trophic traits, each one affecting the biological carbon pump in a different way. This highlights the importance of incorporating data on zooplankton food web structure in future modelling of global ocean carbon cycling.


Assuntos
Copépodes , Cadeia Alimentar , Zooplâncton , Animais , Bermudas , Biota , Ciclo do Carbono
4.
Sci Rep ; 9(1): 783, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692608

RESUMO

Caribbean lionfish (Pterois spp.) are considered the most heavily impacting invasive marine vertebrate ever recorded. However, current management is largely inadequate, relying on opportunistic culling by recreational SCUBA divers. Culling efficiency could be greatly improved by exploiting natural aggregations, but to date this behaviour has only been recorded anecdotally, and the drivers are unknown. We found aggregations to be common in situ, but detected no conspecific attraction through visual or olfactory cues in laboratory experiments. Aggregating individuals were on average larger, but showed no further differences in morphology or life history. However, using visual assessments and 3D modelling we show lionfish prefer broad-scale, but avoid fine-scale, habitat complexity. We therefore suggest that lionfish aggregations are coincidental based on individuals' mutual attraction to similar reef structure to maximise hunting efficiency. Using this knowledge, artificial aggregation devices might be developed to concentrate lionfish densities and thus improve culling efficiency.

5.
Mar Pollut Bull ; 135: 636-647, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301083

RESUMO

The Chagos Archipelago is geographically remote and isolated from most direct anthropogenic pressures. Here, we quantify the abundance and diversity of decapod crustaceans inhabiting dead coral colonies, representing a standardised microhabitat, across the Archipelago. Using morphological and molecular techniques we recorded 1868 decapods from 164 nominal species within 54 dead coral colonies, but total species estimates (Chao1 estimator) calculate at least 217 species. Galatheids were the most dominant taxa, though alpheids and hippolytids were also very abundant. 32% of species were rare, and 46% of species were found at only one atoll. This prevalence of rarer species has been reported in other cryptofauna studies, suggesting these assemblages maybe comprised of low-abundance species. This study provides the first estimate of diversity for reef cryptofauna in Chagos, which will serve as a useful baseline for global comparisons of coral reef biodiversity.


Assuntos
Biodiversidade , Animais , Antozoários/classificação , Recifes de Corais , Ecossistema , Monitoramento Ambiental , Oceano Índico , Ilhas do Oceano Índico
6.
Mol Ecol ; 27(23): 4680-4697, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30308702

RESUMO

The mechanisms that determine patterns of species dispersal are important factors in the production and maintenance of biodiversity. Understanding these mechanisms helps to forecast the responses of species to environmental change. Here, we used a comparative framework and genomewide data obtained through RAD-Seq to compare the patterns of connectivity among breeding colonies for five penguin species with shared ancestry, overlapping distributions and differing ecological niches, allowing an examination of the intrinsic and extrinsic barriers governing dispersal patterns. Our findings show that at-sea range and oceanography underlie patterns of dispersal in these penguins. The pelagic niche of emperor (Aptenodytes forsteri), king (A. patagonicus), Adélie (Pygoscelis adeliae) and chinstrap (P. antarctica) penguins facilitates gene flow over thousands of kilometres. In contrast, the coastal niche of gentoo penguins (P. papua) limits dispersal, resulting in population divergences. Oceanographic fronts also act as dispersal barriers to some extent. We recommend that forecasts of extinction risk incorporate dispersal and that management units are defined by at-sea range and oceanography in species lacking genetic data.


Assuntos
Distribuição Animal , Genética Populacional , Genômica , Spheniscidae/genética , Animais , Regiões Antárticas , Ecossistema , Fluxo Gênico , Variação Genética , Técnicas de Genotipagem , Filogenia , Polimorfismo de Nucleotídeo Único , Spheniscidae/classificação
7.
Proc Biol Sci ; 285(1884)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068675

RESUMO

An understanding of the balance of interspecific competition and the physical environment in structuring organismal communities is crucial because those communities structured primarily by their physical environment typically exhibit greater sensitivity to environmental change than those structured predominantly by competitive interactions. Here, using detailed phylogenetic and functional information, we investigate this question in macrofaunal assemblages from Northwest Atlantic Ocean continental slopes, a high seas region projected to experience substantial environmental change through the current century. We demonstrate assemblages to be both phylogenetically and functionally under-dispersed, and thus conclude that the physical environment, not competition, may dominate in structuring deep-ocean communities. Further, we find temperature and bottom trawling intensity to be among the environmental factors significantly related to assemblage diversity. These results hint that deep-ocean communities are highly sensitive to their physical environment and vulnerable to environmental perturbation, including by direct disturbance through fishing, and indirectly through the changes brought about by climate change.


Assuntos
Organismos Aquáticos , Ecossistema , Pesqueiros , Animais , Oceano Atlântico , Mudança Climática , Filogenia , Temperatura
8.
Adv Mar Biol ; 79: 137-224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30012275

RESUMO

Seamounts are one of the major biomes of the global ocean. The last 25 years of research has seen considerable advances in the understanding of these ecosystems. The interactions between seamounts and steady and variable flows have now been characterised providing a better mechanistic understanding of processes influencing biology. Processes leading to upwelling, including Taylor column formation and tidal rectification, have now been defined as well as those leading to draw down of organic matter from the ocean surface to seamount summit and flanks. There is also an improved understanding of the interactions between seamounts, zooplankton and micronekton communities especially with respect to increased predation pressure in the vicinity of seamounts. Evidence has accumulated of the role of seamounts as hot spots for ocean predators including large pelagic fish, sharks, pinnipeds, cetaceans and seabirds. The complexity of benthic communities associated with seamounts is high and drivers of biodiversity are now being resolved. Claims of high endemism resulting from isolation of seamounts as islands of habitat and speciation have not been supported. However, for species characterised by low dispersal capability, such as some groups of benthic sessile or low-mobility invertebrates, low connectivity between seamount populations has been found with evidence of endemism at a local level. Threats to seamounts have increased in the last 25 years and include overfishing, destructive fishing, marine litter, direct and indirect impacts of climate change and potentially marine mining in the near future. Issues around these threats and their management are discussed.


Assuntos
Ecossistema , Fenômenos Geológicos , Oceanos e Mares , Animais , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos
9.
Ecol Evol ; 8(8): 4098-4107, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721283

RESUMO

Coral reefs are the most biodiverse marine ecosystem and one of the most threatened by global climate change impacts. The vast majority of diversity on reefs is comprised of small invertebrates that live within the reef structure, termed the cryptofauna. This component of biodiversity is hugely understudied, and many species remain undescribed. This study represents a rare analysis of assembly processes structuring a distinct group of cryptofauna, the Palaemonidae, in the Chagos Archipelago, a reef ecosystem under minimal direct human impacts in the central Indian Ocean. The Palaemonidae are a diverse group of Caridae (infraorder of shrimps) that inhabit many different niches on coral reefs and are of particular interest because of their varied habitat associations. Phylogenetic and trait diversity and phylogenetic signal were used to infer likely drivers of community structure. The mechanisms driving palaemonid community assembly and maintenance in the Chagos Archipelago showed distinct spatial patterns. At local scales, among coral colonies and among reefs fringing individual atolls, significant trait, and phylogenetic clustering patterns suggest environmental filtering may be a dominant ecological process driving Palaemonidae community structure, although local competition through equalizing mechanisms may also play a role in shaping the local community structure. Importantly, we also tested the robustness of phylogenetic diversity to changes in evolutionary information as multi-gene phylogenies are resource intensive and for large families, such as the Palaemonidae, are often incomplete. These tests demonstrated a very modest impact on phylogenetic community structure, with only one of the four genes (PEPCK gene) in the phylogeny affecting phylogenetic diversity patterns, which provides useful information for future studies on large families with incomplete phylogenies. These findings contribute to our limited knowledge of this component of biodiversity in a marine locality as close to undisturbed by humans as can be found. It also provides a rare evaluation of phylogenetic diversity methods.

10.
Mar Environ Res ; 134: 37-43, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29290384

RESUMO

Mesophotic Coral Ecosystems (MCEs) may act as a refuge for impacted shallow reefs as some of the stressors affecting tropical reefs attenuate with depth. A less impacted population at depth could provide recruits to recolonise shallow reefs. Recently, disturbance has been reported on several mesophotic reefs including storm damage, biological invasions, and coral bleaching; calling into question the extent of deep reef refuges. We report on a reciprocal transplant experiment between shallow and mesophotic reefs in the Caribbean, which occurred during a period of coral bleaching. 102 fragments of Agaricia lamarcki were collected down a continuous depth gradient at two sites to a maximum depth of 60m. Fragments were transplanted to either a shallow or mesophotic station at a third site, with controls. This allowed the disaggregation of the effect of the disturbance experienced during the observation period, and any potential acclimation resulting from the historical location of a fragment. Mortality and bleaching were quantitatively assessed. We found the relocation depth of a coral fragment had the strongest effect on both survival and the degree of bleaching recorded. The site a fragment was collected from, and the original collection depth, failed to explain mortality or bleaching with statistical significance. This experiment provides support for the assumption that mesophotic corals may be protected in comparison to shallow reefs, in spite of the potential effects of differing susceptibilities to stress.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Animais , Região do Caribe , Ecossistema , Monitoramento Ambiental
11.
PeerJ ; 5: e3683, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828275

RESUMO

Non-native lionfish have been recorded throughout the western Atlantic on both shallow and mesophotic reefs, where they have been linked to declines in reef health. In this study we report the first lionfish observations from the deep sea (>200 m) in Bermuda and Roatan, Honduras, with lionfish observed to a maximum depth of 304 m off the Bermuda platform, and 250 m off West End, Roatan. Placed in the context of other deeper lionfish observations and records, our results imply that lionfish may be present in the 200-300 m depth range of the upper-bathyal zone across many locations in the western Atlantic, but currently are under-sampled compared to shallow habitats. We highlight the need for considering deep-sea lionfish populations in future invasive lionfish management.

12.
PLoS One ; 12(8): e0183075, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28809933

RESUMO

Shallow water zooxanthellate coral reefs grade into ecologically distinct mesophotic coral ecosystems (MCEs) deeper in the euphotic zone. MCEs are widely considered to start at an absolute depth limit of 30m deep, possibly failing to recognise that these are distinct ecological communities that may shift shallower or deeper depending on local environmental conditions. This study aimed to explore whether MCEs represent distinct biological communities, the upper boundary of which can be defined and whether the depth at which they occur may vary above or below 30m. Mixed-gas diving and closed-circuit rebreathers were used to quantitatively survey benthic communities across shallow to mesophotic reef gradients around the island of Utila, Honduras. Depths of up to 85m were sampled, covering the vertical range of the zooxanthellate corals around Utila. We investigate vertical reef zonation using a variety of ecological metrics to identify community shifts with depth, and the appropriateness of different metrics to define the upper MCE boundary. Patterns observed in scleractinian community composition varied between ordination analyses and approaches utilising biodiversity indices. Indices and richness approaches revealed vertical community transition was a gradation. Ordination approaches suggest the possibility of recognising two scleractinian assemblages. We could detect a mesophotic and shallow community while illustrating that belief in a static depth limit is biologically unjustified. The switch between these two communities occurred across bathymetric gradients as small as 10m and as large as 50m in depth. The difference between communities appears to be a loss of shallow specialists and increase in depth-generalist taxa. Therefore, it may be possible to define MCEs by a loss of shallow specialist species. To support a biological definition of mesophotic reefs, we advocate this analytical framework should be applied around the Caribbean and extended into other ocean basins where MCEs are present.


Assuntos
Antozoários/efeitos da radiação , Ecossistema , Luz , Animais , Antozoários/classificação , Biodiversidade , Honduras
13.
R Soc Open Sci ; 4(5): 170027, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28573007

RESUMO

Invasive lionfish (Pterois volitans and P. miles) have spread widely across the western Atlantic and are recognized as a major threat to native marine biodiversity. Although lionfish inhabit both shallow reefs and mesophotic coral ecosystems (MCEs; reefs from 30 to 150 m depth), the primary management response implemented by many countries has been diver-led culling limited to reefs less than 30 m. However, many reef fish undergo ontogenetic migrations, with the largest and therefore most fecund individuals found at greatest depths. Here, we study lionfish density, body size, maturity and dietary patterns across the depth gradient from the surface down to 85 m on heavily culled reefs around Utila, Honduras. We found lionfish at increased densities, body size and weight on MCEs compared with shallow reefs, with MCEs also containing the greatest proportion of actively spawning females, while shallow reefs contained the greatest proportion of immature lionfish. We then compared lionfish behaviour in response to divers on shallow culled and mesophotic unculled Utilan reefs, and on shallow unculled reefs in Tela Bay, on the Honduran mainland. We found that mesophotic lionfish exhibited high alert distances, consistent with individuals previously exposed to culling despite being below the depth limits of removal. In addition, when examining stomach content, we found that fish were the major component of lionfish diets across the depth gradient. Importantly, our results suggest that despite adjacent shallow culling, MCEs retain substantial lionfish populations that may be disproportionately contributing towards continued lionfish recruitment onto the shallow reefs of Utila, potentially undermining current culling-based management.

14.
R Soc Open Sci ; 4(4): 160829, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28484604

RESUMO

There are still notable gaps regarding the detailed distribution of microorganisms between and within insular habitats such as deep-sea hydrothermal vents. This study investigates the community composition of black smoker vent microorganisms in the Southern Hemisphere, and changes thereof along a spatial and chemical gradient ranging from the vent plume to surrounding waters. We sampled two hydrothermal vent fields, one at the South West Indian Ridge (SWIR), the other at the East Scotia Ridge (ESR). Samples were collected across vent fields at varying vertical distances from the origin of the plumes. The microbial data were sequenced on an Illumina MiSeq platform for the 16SrRNA gene. A substantial amount of vent-specific putative chemosynthetic microorganisms were found, particularly in samples from focused hydrothermal venting. Common vent-specific organisms from both vent fields were the genera Arcobacter, Caminibacter and Sulfurimonas from the Epsilonproteobacteria and the SUP05 group from the Gammaproteobacteria. There were no major differences in microbial composition between SWIR and ESR for focused plume samples. However, within the ESR the diffuse flow and focused samples differed significantly in microbial community composition and relative abundance. For Epsilonproteobacteria, we found evidence of niche-specificity to hydrothermal vent environments. This taxon decreased in abundance by three orders of magnitude from the vent orifice to background water. Epsilonproteobacteria distribution followed a distance-decay relationship as vent-effluents mixed with the surrounding seawater. This study demonstrates strong habitat affinity of vent microorganisms on a metre scale with distinct environmental selection.

15.
Mol Ecol ; 26(15): 3883-3897, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28488293

RESUMO

Understanding the boundaries of breeding populations is of great importance for conservation efforts and estimates of extinction risk for threatened species. However, determining these boundaries can be difficult when population structure is subtle. Emperor penguins are highly reliant on sea ice, and some populations may be in jeopardy as climate change alters sea-ice extent and quality. An understanding of emperor penguin population structure is therefore urgently needed. Two previous studies have differed in their conclusions, particularly whether the Ross Sea, a major stronghold for the species, is isolated or not. We assessed emperor penguin population structure using 4,596 genome-wide single nucleotide polymorphisms (SNPs), characterized in 110 individuals (10-16 per colony) from eight colonies around Antarctica. In contrast to a previous conclusion that emperor penguins are panmictic around the entire continent, we find that emperor penguins comprise at least four metapopulations, and that the Ross Sea is clearly a distinct metapopulation. Using larger sample sizes and a thorough assessment of the limitations of different analytical methods, we have shown that population structure within emperor penguins does exist and argue that its recognition is vital for the effective conservation of the species. We discuss the many difficulties that molecular ecologists and managers face in the detection and interpretation of subtle population structure using large SNP data sets, and argue that subtle structure should be taken into account when determining management strategies for threatened species, until accurate estimates of demographic connectivity among populations can be made.


Assuntos
Conservação dos Recursos Naturais , Genética Populacional , Spheniscidae/genética , Animais , Regiões Antárticas , Mudança Climática , Camada de Gelo , Polimorfismo de Nucleotídeo Único , Densidade Demográfica
16.
R Soc Open Sci ; 4(3): 170033, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28405400

RESUMO

Dispersal limitation, not just environmental selection, plays an important role in microbial biogeography. The distance-decay relationship is thought to be weak in habitats where dispersal is high, such as in the pelagic environment, where ocean currents facilitate microbial dispersal. Most studies of microbial community composition to date have observed little geographical heterogeneity on a regional scale (100 km). We present a study of microbial communities across a dynamic frontal zone in the southwest Indian Ocean and investigate the spatial structure of the microbes with respect to the different water masses separated by these fronts. We collected 153 samples of free-living microorganisms from five seamounts located along a gradient from subtropical to subantarctic waters and across three depth layers: (i) the sub-surface chlorophyll maximum (approx. 40 m), (ii) the bottom of the euphotic zone (approx. 200 m), and (iii) the benthic boundary layer (300-2000 m). Diversity and abundance of microbial operational taxonomic units (OTUs) were assessed by amplification and sequencing of the 16S rRNA gene on an Illumina MiSeq platform. Multivariate analyses showed that microbial communities were structured more strongly by depth than by latitude, with similar phyla occurring within each depth stratum across seamounts. The deep layer was homogeneous across the entire survey area, corresponding to the spread of Antarctic intermediate water. However, within both the sub-surface layer and the intermediate depth stratum there was evidence for OTU turnover across fronts. The microbiome of these layers appears to be divided into three distinct biological regimes corresponding to the subantarctic surface water, the convergence zone and subtropical. We show that microbial biogeography across depth and latitudinal gradients is linked to the water masses the microbes persist in, resulting in regional patterns of microbial biogeography that correspond to the regional scale physical oceanography.

17.
PeerJ ; 5: e2853, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28168098

RESUMO

Mesophotic coral ecosystems (MCEs, reefs 30-150 m) are understudied, yet the limited research conducted has been biased towards large sessile taxa, such as scleractinian corals and sponges, or mobile taxa such as fishes. Here we investigate zooplankton communities on shallow reefs and MCEs around Utila on the southern Mesoamerican Barrier Reef using planktonic light traps. Zooplankton samples were sorted into broad taxonomic groups. Our results indicate similar taxonomic zooplankton richness and overall biomass between shallow reefs and MCEs. However, the abundance of larger bodied (>2 mm) zooplanktonic groups, including decapod crab zoea, mysid shrimps and peracarid crustaceans, was higher on MCEs than shallow reefs. Our findings highlight the importance of considering zooplankton when identifying broader reef community shifts across the shallow reef to MCE depth gradient.

18.
PLoS One ; 11(12): e0168235, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959907

RESUMO

Fish surveys form the backbone of reef monitoring and management initiatives throughout the tropics, and understanding patterns in biases between techniques is crucial if outputs are to address key objectives optimally. Often biases are not consistent across natural environmental gradients such as depth, leading to uncertainty in interpretation of results. Recently there has been much interest in mesophotic reefs (reefs from 30-150 m depth) as refuge habitats from fishing pressure, leading to many comparisons of reef fish communities over depth gradients. Here we compare fish communities using stereo-video footage recorded via baited remote underwater video (BRUV) and diver-operated video (DOV) systems on shallow and mesophotic reefs in the Mesoamerican Barrier Reef, Caribbean. We show inconsistent responses across families, species and trophic groups between methods across the depth gradient. Fish species and family richness were higher using BRUV at both depth ranges, suggesting that BRUV is more appropriate for recording all components of the fish community. Fish length distributions were not different between methods on shallow reefs, yet BRUV recorded more small fish on mesophotic reefs. However, DOV consistently recorded greater relative fish community biomass of herbivores, suggesting that studies focusing on herbivores should consider using DOV. Our results highlight the importance of considering what component of reef fish community researchers and managers are most interested in surveying when deciding which survey technique to use across natural gradients such as depth.


Assuntos
Recifes de Corais , Peixes , Densidade Demográfica , Gravação em Vídeo , Animais , Biodiversidade , Biomassa , Tamanho Corporal , Calibragem , Região do Caribe , Monitoramento Ambiental/métodos , Geografia
19.
BMC Evol Biol ; 16(1): 211, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27733109

RESUMO

BACKGROUND: Seabirds are important components of marine ecosystems, both as predators and as indicators of ecological change, being conspicuous and sensitive to changes in prey abundance. To determine whether fluctuations in population sizes are localised or indicative of large-scale ecosystem change, we must first understand population structure and dispersal. King penguins are long-lived seabirds that occupy a niche across the sub-Antarctic zone close to the Polar Front. Colonies have very different histories of exploitation, population recovery, and expansion. RESULTS: We investigated the genetic population structure and patterns of colonisation of king penguins across their current range using a dataset of 5154 unlinked, high-coverage single nucleotide polymorphisms generated via restriction site associated DNA sequencing (RADSeq). Despite breeding at a small number of discrete, geographically separate sites, we find only very slight genetic differentiation among colonies separated by thousands of kilometers of open-ocean, suggesting migration among islands and archipelagos may be common. Our results show that the South Georgia population is slightly differentiated from all other colonies and suggest that the recently founded Falkland Island colony is likely to have been established by migrants from the distant Crozet Islands rather than nearby colonies on South Georgia, possibly as a result of density-dependent processes. CONCLUSIONS: The observed subtle differentiation among king penguin colonies must be considered in future conservation planning and monitoring of the species, and demographic models that attempt to forecast extinction risk in response to large-scale climate change must take into account migration. It is possible that migration could buffer king penguins against some of the impacts of climate change where colonies appear panmictic, although it is unlikely to protect them completely given the widespread physical changes projected for their Southern Ocean foraging grounds. Overall, large-scale population genetic studies of marine predators across the Southern Ocean are revealing more interconnection and migration than previously supposed.


Assuntos
Migração Animal/fisiologia , Ecossistema , Genética Populacional , Spheniscidae/genética , Animais , Regiões Antárticas , Teorema de Bayes , Análise por Conglomerados , Análise Discriminante , Variação Genética , Técnicas de Genotipagem , Geografia , Filogeografia , Densidade Demográfica , Análise de Componente Principal
20.
PLoS One ; 11(6): e0156641, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27332811

RESUMO

Mesophotic coral ecosystems (MCEs; reefs 30-150m depth) are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m) around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass) with depth, mostly driven by declines in parrotfish (Scaridae). Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus), striped parrotfish (Scarus iserti), blue chromis (Chromis cyanea), creole wrasse (Clepticus parrae), bluehead wrasse (Thalassoma bifasciatum) and yellowtail snapper (Ocyurus chrysurus), with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts.


Assuntos
Biomassa , Recifes de Corais , Ecossistema , Peixes/fisiologia , Animais , Biodiversidade , Região do Caribe , Peixes/anatomia & histologia , Geografia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA