Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32017550

RESUMO

The efficient preparation of single-crystalline ionic polymers and fundamental understanding of their structure-property relationships at the molecular level remains a challenge in chemistry and materials science. Here, we describe the single-crystal structure of a highly ordered polycationic polymer (polyelectrolyte) and its proton conductivity. The polyelectrolyte single crystals can be prepared on a gram-scale in quantitative yield, by taking advantage of an ultraviolet/sunlight-induced topochemical polymerization, from a tricationic monomer-a self-complementary building block possessing a preorganized conformation. A single-crystal-to-single-crystal photopolymerization was revealed unambiguously by in situ single-crystal X-ray diffraction analysis, which was also employed to follow the progression of molecular structure from the monomer, to a partially polymerized intermediate, and, finally, to the polymer itself. Collinear polymer chains are held together tightly by multiple Coulombic interactions involving counterions to form two-dimensional lamellar sheets (1 nm in height) with sub-nanometer pores (5 Å). The polymer is extremely stable under 254 nm light irradiation and high temperature (above 500 K). The extraordinary mechanical strength and environmental stability-in combination with its impressive proton conductivity (∼3 × 10-4 S cm-1)-endow the polymer with potential applications as a robust proton-conducting material. By marrying supramolecular chemistry with macromolecular science, the outcome represents a major step toward the controlled synthesis of single-crystalline polyelectrolyte materials with perfect tacticity.

2.
Nature ; 577(7789): 216-220, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915399

RESUMO

Precise protein sequencing and folding are believed to generate the structure and chemical diversity of natural channels1,2, both of which are essential to synthetically achieve proton transport performance comparable to that seen in natural systems. Geometrically defined channels have been fabricated using peptides, DNAs, carbon nanotubes, sequence-defined polymers and organic frameworks3-13. However, none of these channels rivals the performance observed in their natural counterparts. Here we show that without forming an atomically structured channel, four-monomer-based random heteropolymers (RHPs)14 can mimic membrane proteins and exhibit selective proton transport across lipid bilayers at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in an RHP leads to segmental heterogeneity in hydrophobicity, which facilitates the insertion of single RHPs into the lipid bilayers. It also results in bilayer-spanning segments containing polar monomers that promote the formation of hydrogen-bonded chains15,16 for proton transport. Our study demonstrates the importance of the adaptability that is enabled by statistical similarity among RHP chains and of the modularity provided by the chemical diversity of monomers, to achieve uniform behaviour in heterogeneous systems. Our results also validate statistical randomness as an unexplored approach to realize protein-like behaviour at the single-polymer-chain level in a predictable manner.


Assuntos
Lipídeos/química , Prótons , Bicamadas Lipídicas , Modelos Moleculares , Conformação Molecular , Polímeros
3.
Small ; 16(6): e1906436, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31965738

RESUMO

A balanced concentration of ions is essential for biological processes to occur. For example, [H+ ] gradients power adenosine triphosphate synthesis, dynamic changes in [K+ ] and [Na+ ] create action potentials in neuronal communication, and [Cl- ] contributes to maintaining appropriate cell membrane voltage. Sensing ionic concentration is thus important for monitoring and regulating many biological processes. This work demonstrates an ion-selective microelectrode array that simultaneously and independently senses [K+ ], [Na+ ], and [Cl- ] in electrolyte solutions. To obtain ion specificity, the required ion-selective membranes are patterned using microfluidics. As a proof of concept, the change in ionic concentration is monitored during cell proliferation in a cell culture medium. This microelectrode array can easily be integrated in lab-on-a-chip approaches to physiology and biological research and applications.

4.
Adv Healthc Mater ; 9(5): e1901372, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31976634

RESUMO

Bioelectronics devices that directly interface with cells and tissue have applications in neural and cardiac stimulation and recording, electroceuticals, and brain machine interfaces for prostheses. The interface between bioelectronic devices and biological tissue is inherently challenging due to the mismatch in both mechanical properties (hard vs soft) and charge carriers (electrons vs ions). In addition to conventional metals and silicon, new materials have bridged this interface, including conducting polymers, carbon-based nanomaterials, as well as ion-conducting polymers and hydrogels. This review provides an update on advances in soft bioelectronic materials for current and future therapeutic applications. Specifically, this review focuses on soft materials that can conduct both electrons and ions, and also deliver drugs and small molecules. The future opportunities and emerging challenges in the field are also highlighted.

5.
iScience ; 22: 519-533, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31837520

RESUMO

A major frontier in the post-genomic era is the investigation of the control of coordinated growth and three-dimensional form. Dynamic remodeling of complex organs in regulative embryogenesis, regeneration, and cancer reveals that cells and tissues make decisions that implement complex anatomical outcomes. It is now essential to understand not only the genetics that specifies cellular hardware but also the physiological software that implements tissue-level plasticity and robust morphogenesis. Here, we review recent discoveries about the endogenous mechanisms of bioelectrical communication among non-neural cells that enables them to cooperate in vivo. We discuss important advances in bioelectronics, as well as computational and pharmacological tools that are enabling the taming of biophysical controls toward applications in regenerative medicine and synthetic bioengineering.

6.
PLoS One ; 14(8): e0212249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31390363

RESUMO

Biological materials such as chiton tooth, squid beak, and byssal threads of bivalves have inspired the development of new technologies. To this end, we have characterized the acellular components in the buccal mass of the terrestrial slug Ariolimax californicus (banana slug). These components are the radula, the jaw, and the odontophore. In the radula, calcium-rich denticles are tightly interlocked one to the other on top of a nanofibrous chitin membrane. The jaw has a nanostructured morphology made of chitin to achieve compression resistance and is directly linked to the foregut cuticle, which has a protective nanofibrous structure. Finally, in the odontophore, we observed a structurally elastic microstructure that interfaces soft tissues with a highly stressed radula membrane. Based on those observations, we discuss the interaction between these components and highlight how the materials in these task-specific components have evolved. This structure-properties-function study of the A. californicus' buccal mass may aid in the design and fabrication of novel bioinspired materials.


Assuntos
Bochecha/anatomia & histologia , Gastrópodes/anatomia & histologia , Animais , Bochecha/diagnóstico por imagem , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Tamanho do Órgão
7.
Sci Rep ; 9(1): 10844, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350439

RESUMO

Continuous glucose monitoring from sweat and tears can improve the quality of life of diabetic patients and provide data for more accurate diagnosis and treatment. Current continuous glucose sensors use enzymes with a one-to-two week lifespan, which forces periodic replacement. Metal oxide sensors are an alternative to enzymatic sensors with a longer lifetime. However, metal oxide sensors do not operate in sweat and tears because they function at high pH (pH > 10), and sweat and tears are neutral (pH = 7). Here, we introduce a non-enzymatic metal oxide glucose sensor that functions in neutral fluids by electronically inducing a reversible and localized pH change. We demonstrate glucose monitoring at physiologically relevant levels in neutral fluids mimicking sweat, and wireless communication with a personal computer via an integrated circuit board.

8.
ACS Chem Neurosci ; 10(8): 3880-3887, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31319029

RESUMO

Amyloid ß (Aß) 42 is an aggregation-prone peptide and the believed seminal etiological agent of Alzheimer's disease (AD). Intermediates of Aß42 aggregation, commonly referred to as diffusible oligomers, are considered to be among the most toxic forms of the peptide. Here, we studied the effect of the age-related epimerization of Ser26 (i.e., S26s chiral edit) in Aß42 and discovered that this subtle molecular change led to reduced fibril formation propensity. Surprisingly, the resultant soluble aggregates were nontoxic. To gain insight into the structural changes that occurred in the peptide upon S26s substitution, the system was probed using an array of biophysical and biochemical methods. These experiments consistently pointed to the stabilization of aggregation intermediates in the Aß42-S26s system. To better understand the changes arising as a consequence of the S26s substitution, molecular level structural studies were performed. Using a combined nuclear magnetic resonance (NMR)- and density functional theory (DFT)-computational approach, we found that the S26s chiral edit induced only local structural changes in the Gly25-Ser26-Asn27 region. Interestingly, these subtle changes enabled the formation of an intramolecular Ser26-Asn27 H-bond, which disrupted the ability of Asn27 to engage in the fibrillogenic side chain-to-side chain H-bonding pattern. This reveals that intermolecular stabilizing interactions between Asn27 side chains are a key element controlling Aß42 aggregation and toxicity.

9.
PLoS One ; 14(5): e0212501, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31042751

RESUMO

Visual design, learning sciences, and nanotechnology may be strange bedfellows; yet, as this paper highlights, peer interaction between a designer and a scientist is an effective method for helping scientists acquire visual design skills. We describe our findings from observing twelve sessions at the Design Help Desk, a tutoring center at the University of Washington. At each session, a scientist (who is expert in his own domain but a novice in design) consulted a designer (who is expert in design but a novice in science) in order to receive advice and guidance on how to improve a scientific visualization. At the Design Help Desk, this pairing consistently produced a momentary disequilibrium in the scientist's thought process: a disequilibrium that led to agency (where the scientist gained ownership of his/her own learning) and conceptual change in the scientist's understanding of visual design. Scientists who visited the Design Help Desk were satisfied with their experience, and their published work demonstrated an improved ability to visually communicate research findings-a skill critical to the advancement of science. To our knowledge, the Design Help Desk is a unique effort to educate scientists in visual design; we are not aware of any other design-advice/tutoring centers at public or private universities in the United States or abroad.


Assuntos
Engenharia/educação , Pesquisadores/educação , Humanos , Aprendizagem , Nanotecnologia , Universidades
10.
Adv Sci (Weinh) ; 6(7): 1800935, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30989015

RESUMO

Bioelectronic devices that modulate pH can affect critical biological processes including enzymatic activity, oxidative phosphorylation, and neuronal excitability. A major challenge in controlling pH is the high buffering capacity of many biological media. To overcome this challenge, devices need to be able to store and deliver a large number of protons on demand. Here, a bioelectronic modulator that controls pH using palladium nanoparticles contacts with high surface area as a proton storage medium is developed. Reversible electronically triggered acidosis (low pH) and alkalosis (high pH) in physiologically relevant buffer conditions are achieved. As a proof of principle, this new platform is used to control the degradation and fluorescence of acid sensitive polymeric microparticles loaded with a pH sensitive fluorescent dye.

11.
PLoS One ; 14(3): e0202713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30849116

RESUMO

Proton conductivity is important in many natural phenomena including oxidative phosphorylation in mitochondria and archaea, uncoupling membrane potentials by the antibiotic Gramicidin, and proton actuated bioluminescence in dinoflagellate. In all of these phenomena, the conduction of protons occurs along chains of hydrogen bonds between water and hydrophilic residues. These chains of hydrogen bonds are also present in many hydrated biopolymers and macromolecule including collagen, keratin, chitosan, and various proteins such as reflectin. All of these materials are also proton conductors. Recently, our group has discovered that the jelly found in the Ampullae of Lorenzini- shark's electro-sensing organs- is the highest naturally occurring proton conducting substance. The jelly has a complex composition, but we proposed that the conductivity is due to the glycosaminoglycan keratan sulfate (KS). Here we measure the proton conductivity of hydrated keratan sulfate purified from Bovine Cornea. PdHx contacts at 0.50 ± 0.11 mS cm -1, which is consistent to that of Ampullae of Lorenzini jelly at 2 ± 1 mS cm -1. Proton conductivity, albeit with lower values, is also shared by other glycosaminoglycans with similar chemical structures including dermatan sulfate, chondroitin sulfate A, heparan sulfate, and hyaluronic acid. This observation supports the relationship between proton conductivity and the chemical structure of biopolymers.


Assuntos
Glicosaminoglicanos/metabolismo , Animais , Bovinos , Córnea/metabolismo , Condutividade Elétrica , Glicosaminoglicanos/química , Técnicas In Vitro , Sulfato de Ceratano/química , Sulfato de Ceratano/metabolismo , Paládio , Prótons , Órgãos dos Sentidos/metabolismo , Tubarões/metabolismo
12.
PLoS One ; 14(2): e0212197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794578

RESUMO

Hybrid biotic abiotic devices can be used to interface electronics with biological systems for novel therapies or to increase device functionality beyond silicon. Many strategies exist to merge the electronic and biological worlds, one dominated by electrons and holes as charge carriers, the other by ions. In the biological world, lipid bilayers and ion channels are essential to compartmentalize the cell machinery and regulate ionic fluxes across the cell membrane. Here, we demonstrate a bioelectronic device in which a lipid bilayer supported on H+-conducting Pd/PdHx contacts contains carbon nanotubes porin (CNTP) channels. This bioelectronic device uses CNTPs to control of H+ flow across the lipid bilayer with a voltage applied to the Pd/PdHx contacts. Potential applications of these devices include local pH sensing and control.


Assuntos
Elétrons , Bicamadas Lipídicas/química , Nanotubos/química , Porinas/química , Prótons , Eletrônica
13.
Cell Syst ; 7(3): 231-244, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30243561

RESUMO

The fields of synthetic biology, which focuses on genetic and cellular substrates, and bioelectronics, which focuses on interfacing electronics with biology, may appear to have little in common on the surface. However, we contend that there is potential for convergence between the two fields based on shared and complementary design principles from each field. We provide examples where this convergence is beginning to take place in the engineered measurement and control of cell populations, individual cells, and membrane transport. We propose that as the convergence spreads, bioelectronics will enable real-time sensing and control of synthetic biological processes through integration with conventional electronics. The increased capabilities resulting from this convergence may broaden the scope and deepen the impact of both synthetic biology and bioelectronics.


Assuntos
Transporte Biológico/fisiologia , Técnicas Biossensoriais/métodos , Membrana Celular/fisiologia , Eletrônica/métodos , Biologia Sintética , Bioengenharia/métodos , Fenômenos Fisiológicos Celulares , Expressão Gênica , Humanos , Transdução de Sinais
14.
ACS Appl Mater Interfaces ; 10(30): 25303-25310, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29869495

RESUMO

Exactly 50 years ago, the ground-breaking discovery of dibenzo[18]crown-6 (DB18C6) by Charles Pedersen led to the use of DB18C6 as a receptor in supramolecular chemistry and a host in host-guest chemistry. We have demonstrated proton conductivity in Tröger's base-linked polymers through hydrogen-bonded networks formed from adsorbed water molecules on the oxygen atoms of DB18C6 under humid conditions. Tröger's base-linked polymers-poly(TBL-DB18C6)- t and poly(TBL-DB18C6)- c-synthesized by the in situ alkylation and cyclization of either trans- or cis-di(aminobenzo) [18]crown-6 at room temperature have been isolated as high-molecular-weight polymers. The macromolecular structures of the isomeric poly(TBL-DB18C6)s have been established by spectroscopic techniques and size-exclusion chromatography. The excellent solubility of these polymers in chloroform allows the formation of freestanding membranes, which are thermally stable and also show stability under aqueous conditions. The hydrophilic nature of the DB18C6 building blocks in the polymer facilitates retention of water as confirmed by water vapor adsorption isotherms, which show a 23 wt % water uptake. The adsorbed water is retained even after reducing the relative humidity to 25%. The proton conductivity of poly(TBL-DB18C6)- t, which is found to be 1.4 × 10-4 mS cm-1 in a humid environment, arises from the hydrogen bonding and the associated proton-hopping mechanism, as supported by a modeling study. In addition to proton conductivity, the Tröger's base-linked polymers reported here promise a wide range of applications where the sub-nanometer-sized cavities of the crown ethers and the robust film-forming ability are the governing factors in dictating their properties.

15.
ACS Appl Mater Interfaces ; 10(26): 21782-21787, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29905062

RESUMO

Biological systems exchange information often with chemical signals. Here, we demonstrate the chemical delivery of a fluorescent label using a bioelectronic trigger. Acid-sensitive microparticles release fluorescin diacetate upon low pH induced by a bioelectronic device. Cardiac fibroblast cells (CFs) uptake fluorescin diacetate, which transforms into fluorescein and emits a fluorescent signal. This proof-of-concept bioelectronic triggered delivery may be used in the future for real-time programming and control of cells and cell systems.

16.
ACS Appl Mater Interfaces ; 10(2): 1933-1938, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29265803

RESUMO

Charge transfer at the interface between the active layer and the contact is essential in any device. Transfer of electronic charges across the contact/active layer interface with metal contacts is well-understood. To this end, noble metals, such as gold or platinum, are widely used. With these contacts, ionic currents (especially protonic) are often neglected because ions and protons do not transfer across the interface between the contact and the active layer. Palladium hydride contacts have emerged as good contacts to measure proton currents because of a reversible redox reaction at the interface and subsequent absorption/desorption of H into palladium, translating the proton flow reaching the interface into an electron flow at the outer circuit. Here, we demonstrate that gold and palladium contacts also collect proton currents, especially under high relative humidity conditions because of electrochemical reactions at the interface. A marked kinetic isotope effect, which is a signature of proton currents, is observed with gold and palladium contacts, indicating both bulk and contact processes involving proton transfer. These phenomena are attributed to electrochemical processes involving water splitting at the interface. In addition to promoting charge transfer at the interface, these interfacial electrochemical processes inject charge carriers into the active layer and hence can also modulate the bulk resistivity of the materials, as was found for the studied peptide fibril films. We conclude that proton currents may not be neglected a priori when performing electronic measurements on biological and bioinspired materials with gold and palladium contacts under high humidity conditions.

17.
Adv Sci (Weinh) ; 4(7): 1600527, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28725527

RESUMO

From cell-to-cell communication to metabolic reactions, ions and protons (H+) play a central role in many biological processes. Examples of H+ in action include oxidative phosphorylation, acid sensitive ion channels, and pH dependent enzymatic reactions. To monitor and control biological reactions in biology and medicine, it is desirable to have electronic devices with ionic and protonic currents. Here, we summarize our latest efforts on bioprotonic devices that monitor and control a current of H+ in physiological conditions, and discuss future potential applications. Specifically, we describe the integration of these devices with enzymatic logic gates, bioluminescent reactions, and ion channels.

18.
Angew Chem Int Ed Engl ; 56(38): 11506-11510, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28682473

RESUMO

Racemates often have lower solubility than enantiopure compounds, and the mixing of enantiomers can enhance the aggregation propensity of peptides. Amyloid beta (Aß) 42 is an aggregation-prone peptide that is believed to play a key role in Alzheimer's disease. Soluble Aß42 aggregation intermediates (oligomers) have emerged as being particularly neurotoxic. We hypothesized that the addition of mirror-image d-Aß42 should reduce the concentration of toxic oligomers formed from natural l-Aß42. We synthesized l- and D-Aß42 and found their equimolar mixing to lead to accelerated fibril formation. Confocal microscopy with fluorescently labeled analogues of the enantiomers showed their colocalization in racemic fibrils. Owing to the enhanced fibril formation propensity, racemic Aß42 was less prone to form soluble oligomers. This resulted in the protection of cells from the toxicity of l-Aß42 at concentrations up to 50 µm. The mixing of Aß42 enantiomers thus accelerates the formation of non-toxic fibrils.


Assuntos
Peptídeos beta-Amiloides/síntese química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Microscopia Confocal , Células PC12 , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
19.
Nat Commun ; 7: 12981, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713411

RESUMO

In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic-abiotic bioprotonic device with Pd contacts that regulates proton (H+) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM). We model the device characteristics using the Goldman-Hodgkin-Katz (GHK) solution to the Nernst-Planck equation for transport across the membrane. We derive the permeability for an SLB integrating gA and ALM and demonstrate pH control as a function of applied voltage and membrane permeability. This work opens the door to integrating more complex H+ channels at the Pd contact interface to produce responsive biotic-abiotic devices with increased functionality.


Assuntos
Alameticina/química , Membrana Celular/metabolismo , Gramicidina/química , Canais Iônicos/química , Íons/metabolismo , Transporte Biológico/fisiologia , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Potenciais da Membrana/fisiologia , Permeabilidade , Prótons , Dispositivos Eletrônicos Vestíveis
20.
Sci Adv ; 2(5): e1600112, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386543

RESUMO

In 1678, Stefano Lorenzini first described a network of organs of unknown function in the torpedo ray-the ampullae of Lorenzini (AoL). An individual ampulla consists of a pore on the skin that is open to the environment, a canal containing a jelly and leading to an alveolus with a series of electrosensing cells. The role of the AoL remained a mystery for almost 300 years until research demonstrated that skates, sharks, and rays detect very weak electric fields produced by a potential prey. The AoL jelly likely contributes to this electrosensing function, yet the exact details of this contribution remain unclear. We measure the proton conductivity of the AoL jelly extracted from skates and sharks. The room-temperature proton conductivity of the AoL jelly is very high at 2 ± 1 mS/cm. This conductivity is only 40-fold lower than the current state-of-the-art proton-conducting polymer Nafion, and it is the highest reported for a biological material so far. We suggest that keratan sulfate, identified previously in the AoL jelly and confirmed here, may contribute to the high proton conductivity of the AoL jelly with its sulfate groups-acid groups and proton donors. We hope that the observed high proton conductivity of the AoL jelly may contribute to future studies of the AoL function.


Assuntos
Condutividade Elétrica , Peixe Elétrico , Prótons , Animais , Fenômenos Eletrofisiológicos , Células Receptoras Sensoriais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA