Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(9): eaax2166, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31579823

RESUMO

RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.

2.
Nat Commun ; 10(1): 4679, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616000

RESUMO

Postsynaptic density (PSD) proteins have been implicated in the pathophysiology of neurodevelopmental and psychiatric disorders. Here, we present detailed clinical and genetic data for 20 patients with likely gene-disrupting mutations in TANC2-whose protein product interacts with multiple PSD proteins. Pediatric patients with disruptive mutations present with autism, intellectual disability, and delayed language and motor development. In addition to a variable degree of epilepsy and facial dysmorphism, we observe a pattern of more complex psychiatric dysfunction or behavioral problems in adult probands or carrier parents. Although this observation requires replication to establish statistical significance, it also suggests that mutations in this gene are associated with a variety of neuropsychiatric disorders consistent with its postsynaptic function. We find that TANC2 is expressed broadly in the human developing brain, especially in excitatory neurons and glial cells, but shows a more restricted pattern in Drosophila glial cells where its disruption affects behavioral outcomes.

3.
Hum Genet ; 138(2): 187-198, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30656450

RESUMO

Developmental and epileptic encephalopathies (DEEs) are genetically heterogenous conditions, often characterized by early onset, EEG interictal epileptiform abnormalities, polymorphous and drug-resistant seizures, and neurodevelopmental impairments. In this study, we investigated the genetic defects in two siblings who presented with severe DEE, microcephaly, spastic tetraplegia, diffuse brain hypomyelination, cerebellar atrophy, short stature, and kyphoscoliosis. Whole exome next-generation sequencing (WES) identified in both siblings a homozygous non-sense variant in the ACTL6B gene (NM_016188:c.820C>T;p.Gln274*) coding for a subunit of the neuron-specific chromatin remodeling complex nBAF. To further support these findings, a targeted ACTL6B sequencing assay was performed on a cohort of 85 unrelated DEE individuals, leading to the identification of a homozygous missense variant (NM_016188:c.1045G>A;p.Gly349Ser) in a patient. This variant did not segregate in the unaffected siblings in this family and was classified as deleterious by several prediction softwares. Interestingly, in both families, homozygous patients shared a rather homogeneous phenotype. Very few patients with ACTL6B gene variants have been sporadically reported in WES cohort studies of patients with neurodevelopmental disorders and/or congenital brain malformations. However, the limited number of patients with incomplete clinical information yet reported in the literature did not allow to establish a strong gene-disease association. Here, we provide additional genetic and clinical data on three new cases that support the pathogenic role of ACTL6B gene mutation in a syndromic form of DEE.


Assuntos
Actinas/genética , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Doenças Genéticas Inatas/diagnóstico por imagem , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Quadriplegia/genética , Espasmos Infantis/genética , Criança , Pré-Escolar , Cromatina/genética , Metilação de DNA/genética , Feminino , Doenças Genéticas Inatas/genética , Humanos , Lactente , Recém-Nascido , Masculino , Microcefalia/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Linhagem , Quadriplegia/diagnóstico por imagem , Espasmos Infantis/diagnóstico por imagem
4.
Eur J Hum Genet ; 27(4): 594-602, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30659260

RESUMO

In recent years, chromosomal microarray analysis has permitted the discovery of rearrangements underlying several neurodevelopmental disorders and still represents the first diagnostic test for unexplained neurodevelopmental disabilities. Here we report a family of consanguineous parents showing psychiatric disorders and their two sons both affected by intellectual disability, ataxia, and behavioral disorder. SNP/CGH array analysis in this family demonstrated in both siblings a biallelic duplication inherited from the heterozygous parents, disrupting the ADGRB3 gene. ADGRB3, also known as BAI3, belongs to the subfamily of adhesion G protein-coupled receptors (adhesion GPCRs) that regulate many aspects of the central nervous system, including axon guidance, myelination, and synapse formation. Single nucleotide polymorphisms and copy number variants involving ADGRB3 have recently been associated with psychiatric disorders. These findings further support this association and also suggest that biallelic variants affecting the function of the ADGRB3 gene may also cause cognitive impairments and ataxia.

5.
Eur J Hum Genet ; 27(5): 738-746, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30679813

RESUMO

Determining pathogenicity of genomic variation identified by next-generation sequencing techniques can be supported by recurrent disruptive variants in the same gene in phenotypically similar individuals. However, interpretation of novel variants in a specific gene in individuals with mild-moderate intellectual disability (ID) without recognizable syndromic features can be challenging and reverse phenotyping is often required. We describe 24 individuals with a de novo disease-causing variant in, or partial deletion of, the F-box only protein 11 gene (FBXO11, also known as VIT1 and PRMT9). FBXO11 is part of the SCF (SKP1-cullin-F-box) complex, a multi-protein E3 ubiquitin-ligase complex catalyzing the ubiquitination of proteins destined for proteasomal degradation. Twenty-two variants were identified by next-generation sequencing, comprising 2 in-frame deletions, 11 missense variants, 1 canonical splice site variant, and 8 nonsense or frameshift variants leading to a truncated protein or degraded transcript. The remaining two variants were identified by array-comparative genomic hybridization and consisted of a partial deletion of FBXO11. All individuals had borderline to severe ID and behavioral problems (autism spectrum disorder, attention-deficit/hyperactivity disorder, anxiety, aggression) were observed in most of them. The most relevant common facial features included a thin upper lip and a broad prominent space between the paramedian peaks of the upper lip. Other features were hypotonia and hyperlaxity of the joints. We show that de novo variants in FBXO11 cause a syndromic form of ID. The current series show the power of reverse phenotyping in the interpretation of novel genetic variances in individuals who initially did not appear to have a clear recognizable phenotype.

6.
BMC Med Genet ; 20(1): 4, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612561

RESUMO

BACKGROUND: Klinefelter syndrome (KS) is characterized by the presence of at least one supernumerary X chromosome. KS typical symptoms include tall stature, gynecomastia, hypogonadism and azoospermia. KS patients show a higher risk of developing metabolic and cardiovascular diseases, inflammatory and autoimmune disorders, osteoporosis and cancer. Long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) has been shown to be involved in several biologic processes, including inflammatory and autoimmune diseases, vascular endothelial cells apoptosis and atherosclerosis, as well as cellular growth and proliferation, cellular development and cell-to-cell signaling and interaction. The lncRNA GAS5 expression profile in KS patients has never been evaluated so far. METHODS: To accomplish this, GAS5 mRNA levels were evaluated by Next Generation Sequencing (NGS) technology and qRT-PCR assay in 10 patients with KS and 10 age-matched controls. RESULTS: NGS results showed a significantly lncRNAGAS5up-regulation by 5.171-fold in patients with KS. Theresults of qRT-PCR confirmed the NGS data. CONCLUSIONS: These findings showed the occurrence of lncRNA GAS5 over-expression in KS patients. Whether this lncRNA is involved in the pathogenesis of inflammation and autoimmune diseases, atherogenesis or germ cell depletion in KS patients is not known. Further studies are needed.


Assuntos
Regulação da Expressão Gênica , Síndrome de Klinefelter/genética , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Regulação para Cima , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Mensageiro , Doenças Raras/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
7.
Biol Psychiatry ; 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29724491

RESUMO

BACKGROUND: In genome-wide screening studies for de novo mutations underlying autism and intellectual disability, mutations in the ADNP gene are consistently reported among the most frequent. ADNP mutations have been identified in children with autism spectrum disorder comorbid with intellectual disability, distinctive facial features, and deficits in multiple organ systems. However, a comprehensive clinical description of the Helsmoortel-Van der Aa syndrome is lacking. METHODS: We identified a worldwide cohort of 78 individuals with likely disruptive mutations in ADNP from January 2014 to October 2016 through systematic literature search, by contacting collaborators, and through direct interaction with parents. Clinicians filled in a structured questionnaire on genetic and clinical findings to enable correlations between genotype and phenotype. Clinical photographs and specialist reports were gathered. Parents were interviewed to complement the written questionnaires. RESULTS: We report on the detailed clinical characterization of a large cohort of individuals with an ADNP mutation and demonstrate a distinctive combination of clinical features, including mild to severe intellectual disability, autism, severe speech and motor delay, and common facial characteristics. Brain abnormalities, behavioral problems, sleep disturbance, epilepsy, hypotonia, visual problems, congenital heart defects, gastrointestinal problems, short stature, and hormonal deficiencies are common comorbidities. Strikingly, individuals with the recurrent p.Tyr719* mutation were more severely affected. CONCLUSIONS: This overview defines the full clinical spectrum of individuals with ADNP mutations, a specific autism subtype. We show that individuals with mutations in ADNP have many overlapping clinical features that are distinctive from those of other autism and/or intellectual disability syndromes. In addition, our data show preliminary evidence of a correlation between genotype and phenotype.

9.
Am J Hum Genet ; 102(5): 985-994, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656860

RESUMO

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.

10.
Ann Neurol ; 83(5): 926-934, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29630738

RESUMO

OBJECTIVE: Cut homeodomain transcription factor CUX2 plays an important role in dendrite branching, spine development, and synapse formation in layer II to III neurons of the cerebral cortex. We identify a recurrent de novo CUX2 p.Glu590Lys as a novel genetic cause for developmental and epileptic encephalopathy (DEE). METHODS: The de novo p.Glu590Lys variant was identified by whole-exome sequencing (n = 5) or targeted gene panel (n = 4). We performed electroclinical and imaging phenotyping on all patients. RESULTS: The cohort comprised 7 males and 2 females. Mean age at study was 13 years (0.5-21.0). Median age at seizure onset was 6 months (2 months to 9 years). Seizure types at onset were myoclonic, atypical absence with myoclonic components, and focal seizures. Epileptiform activity on electroencephalogram was seen in 8 cases: generalized polyspike-wave (6) or multifocal discharges (2). Seizures were drug resistant in 7 or controlled with valproate (2). Six patients had a DEE: myoclonic DEE (3), Lennox-Gastaut syndrome (2), and West syndrome (1). Two had a static encephalopathy and genetic generalized epilepsy, including absence epilepsy in 1. One infant had multifocal epilepsy. Eight had severe cognitive impairment, with autistic features in 6. The p.Glu590Lys variant affects a highly conserved glutamine residue in the CUT domain predicted to interfere with CUX2 binding to DNA targets during neuronal development. INTERPRETATION: Patients with CUX2 p.Glu590Lys display a distinctive phenotypic spectrum, which is predominantly generalized epilepsy, with infantile-onset myoclonic DEE at the severe end and generalized epilepsy with severe static developmental encephalopathy at the milder end of the spectrum. Ann Neurol 2018;83:926-934.

12.
Int J Med Sci ; 15(1): 31-35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29333085

RESUMO

Objectives: Klinefelter syndrome (KS) is one of the most common sex-chromosome disorders as it affects up to 1 in every 600-1000 newborn males. Men with KS carry one extra X chromosome and they usually present a 47,XXY karyotype, but less frequent variants have also been reported in literature. KS typical symptoms include tall stature, gynecomastia, broad hips, hypogonadism and absent spermatogenesis. The syndrome is also related to a wide range of cognitive deficits, among which language-based learning disabilities and verbal cognition impairment are frequently diagnosed. The present study was carried out to investigate the role of mitochondrial subunits in KS, since the molecular mechanisms underlying KS pathogenesis are not fully understood. Methods: The study was performed by the next generation sequencing analysis and qRT-PCR assay. Results: We were able to identify a significant down-expression of mitochondrial encoded NADH: ubiquinone oxidoreductase core subunit 6 (MT-ND6) in men with KS. Conclusion: It is known that defects of the mtDNA encoding mitochondrial subunits are responsible for the malfunction of Complex I, which will eventually lead to the Complex I deficiency, the most common respiratory chain defect in human disorders. Since it has been shown that decreased Complex I protein levels could induce apoptosis, wehypothesizethat the above-mentioned MT-ND6 down-expression contributes to the wide range of phenotypes observed in men with KS.


Assuntos
DNA Mitocondrial/metabolismo , Perfilação da Expressão Gênica , Síndrome de Klinefelter/genética , Mitocôndrias/genética , NADH Desidrogenase/metabolismo , Adulto , Estudos de Casos e Controles , Regulação para Baixo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , Fenótipo , Transcriptoma , Adulto Jovem
13.
G Ital Dermatol Venereol ; 153(5): 716-721, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28421730

RESUMO

The authors examine what is meant as facies in medicine. After an introduction to the word's understanding, they move on listing some dermatological conditions associated to peculiar facies in the child. Starting from atopic dermatitis, the authors develop an algorithm including Genodermatoses, Neurocutaneous Disorders, and Multiple Congenital Anomalies Syndromes. They emphasize the distinctive features of the lesions on the face and their fundamental diagnostic importance.

14.
Eur J Hum Genet ; 26(1): 54-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29209020

RESUMO

Genotype-first combined with reverse phenotyping has shown to be a powerful tool in human genetics, especially in the era of next generation sequencing. This combines the identification of individuals with mutations in the same gene and linking these to consistent (endo)phenotypes to establish disease causality. We have performed a MIP (molecular inversion probe)-based targeted re-sequencing study in 3,275 individuals with intellectual disability (ID) to facilitate a genotype-first approach for 24 genes previously implicated in ID.Combining our data with data from a publicly available database, we confirmed 11 of these 24 genes to be relevant for ID. Amongst these, PHIP was shown to have an enrichment of disruptive mutations in the individuals with ID (5 out of 3,275). Through international collaboration, we identified a total of 23 individuals with PHIP mutations and elucidated the associated phenotype. Remarkably, all 23 individuals had developmental delay/ID and the majority were overweight or obese. Other features comprised behavioral problems (hyperactivity, aggression, features of autism and/or mood disorder) and dysmorphisms (full eyebrows and/or synophrys, upturned nose, large ears and tapering fingers). Interestingly, PHIP encodes two protein-isoforms, PHIP/DCAF14 and NDRP, each involved in neurodevelopmental processes, including E3 ubiquitination and neuronal differentiation. Detailed genotype-phenotype analysis points towards haploinsufficiency of PHIP/DCAF14, and not NDRP, as the underlying cause of the phenotype.Thus, we demonstrated the use of large scale re-sequencing by MIPs, followed by reverse phenotyping, as a constructive approach to verify candidate disease genes and identify novel syndromes, highlighted by PHIP haploinsufficiency causing an ID-overweight syndrome.

15.
Eur J Pharmacol ; 817: 7-19, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28987272

RESUMO

Individuals with Down syndrome are at increased risk of developing Alzheimer's disease due to increase gene dosage resulting from chromosome 21 triplication. Although virtually all adults with Down syndrome will exhibit the major neuropathological hallmarks that define Alzheimer's disease, not all of them will develop the clinical symptoms associated with this disorder (i.e. dementia). Therefore, a good understanding of the pathophysiology of Alzheimer's disease in Down syndrome will be crucial for the identification of novel pharmacological targets to develop disease-modifying therapies for the benefit of Down syndrome individuals and for Alzheimer's sufferers alike. The study of biomarkers will also be essential for the development of better screening tools to identify dementia at its incipient stages. This review discusses the best-validated pharmacological targets for the treatment of cognitive impairment and Alzheimer's disease in Down syndrome. We further examine the relevance of newly discovered biological markers for earlier dementia diagnosis in this population.


Assuntos
Doença de Alzheimer/metabolismo , Síndrome de Down/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Síndrome de Down/tratamento farmacológico , Humanos
17.
Nat Neurosci ; 20(8): 1043-1051, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628100

RESUMO

Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.


Assuntos
Sequência de Aminoácidos/genética , Transtorno Autístico/genética , Exoma/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Feminino , Humanos , Masculino , Receptores de AMPA/genética , Receptores de Glutamato/genética
18.
J Alzheimers Dis ; 56(4): 1451-1457, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28211809

RESUMO

BACKGROUND: A functional polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene, namely C677T (rs1801133), results in increased Hcy levels and has been associated with risk of late-onset Alzheimer's disease (LOAD). Many investigators reported association between rs1801133 and LOAD risk in Asian populations and in carriers of the apolipoprotein E (APOE) ɛ4 allele, but recent meta-analyses suggest a contribution also in other populations, including Caucasians and/or northern Africans. OBJECTIVE: To further address this issue, we performed a relatively large case-control study, including 581 LOAD patients and 468 matched controls of Italian origin. APOE data were available for a subgroup of almost 600 subjects. METHODS: Genotyping for rs1801133 was performed with PCR-RFLP techniques. RESULTS: In the total population, the MTHFR 677T allele (OR = 1.20; 95% CI = 1.01-1.43) and carriers of the MTHFR 677T allele (CT+TT versus CC: OR = 1.34; 95% CI = 1.03-1.73) resulted in increased LOAD risk. Similarly, in APOEɛ4 carriers, we observed an increased frequency of MTHFR 677CT carriers (CT versus CC: OR = 2.82; 95% CI = 1.25-6.32). Very interestingly, also in non-APOEɛ4 carriers, both MTHFR 677T allele (OR = 1.38; 95% CI = 1.03-1.85) and MTHFR 677TT genotype (OR = 2.08; 95% CI = 1.11-3.90) were associated with LOAD. All these associations survived after corrections for age, gender, and multiple testing. CONCLUSIONS: The present results suggest that the MTHFR C677T polymorphism is likely a LOAD risk factor in our cohort, either in APOEɛ4 or in non-APOEɛ4 carriers.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo Genético , Idade de Início , Idoso , Apolipoproteínas E/genética , Estudos de Casos e Controles , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Heterozigoto , Humanos , Itália , Masculino , Sexo
19.
Nat Genet ; 49(4): 515-526, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28191889

RESUMO

Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.


Assuntos
Transtorno Autístico/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Feminino , Humanos , Masculino , Mutação/genética , Fenótipo
20.
Eur J Med Genet ; 60(2): 93-99, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27838393

RESUMO

Neurofibromatosis type 1 (NF1) is caused by mutations of the NF1 gene and is one of the most common human autosomal dominant disorders. The patient shows different signs on the skin and other organs from early childhood. The best known are six or more café au lait spots, axillary or inguinal freckling, increased risk of developing benign nerve sheath tumours and plexiform neurofibromas. Mutation detection is complex, due to the large gene size, the large variety of mutations and the presence of pseudogenes. Using Ion Torrent PGM™ Platform, 73 mutations were identified in 79 NF1 Italian patients, 51% of which turned out to be novel mutations. Pathogenic status of each variant was classified using "American College of Medical Genetics and Genomics" guidelines criteria, thus enabling the classification of 96% of the variants identified as being pathogenic. The use of Next Generation Sequencing has proven to be effective as for costs, and time for analysis, and it allowed us to identify a patient with NF1 mosaicism. Furthermore, we designed a new approach aimed to quantify the mosaicism percentage using electropherogram of capillary electrophoresis performed on Sanger method.


Assuntos
Manchas Café com Leite/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Anormalidades da Pele/genética , Adolescente , Adulto , Manchas Café com Leite/patologia , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Itália , Masculino , Pessoa de Meia-Idade , Mosaicismo , Mutação , Neurofibromatose 1/patologia , Análise de Sequência de DNA , Anormalidades da Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA