Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
ChemSusChem ; 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33492767


Recycling multilayer plastic packaging is challenging due to its intrinsic compositional heterogeneity. A promising route to increase recycling rates for these materials is delamination, which allows recycling the polymers separately. Yet, this process is not well understood on a fundamental level. This study aimed to obtain first principles-based insights of the delamination mechanism of multilayer flexible packaging film (MFPF) with carboxylic acids. Delamination of MFPFs was described through a model based on Fick's first law of diffusion and first-order dissolution kinetics of polyurethane adhesives. The model was experimentally tested on 5 different MFPFs at different temperatures (50-75 °C), formic acid concentrations (50-100 vol %), and solid/liquid (S/L) ratios (0.005, 0.025, and 0.12 g mL-1 ). Under the studied conditions the model proved to successfully estimate the delamination time of MFPF with the average Theil's Inequality Coefficient (TIC) value of 0.14. Essential for scaling-up delamination processes is the possibility to use high S/L ratios as the solubility of the adhesive is rarely limiting.

Waste Manag ; 120: 290-302, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333467


Household packaging waste sorting facilities consist of complex networks of processes to separate diverse waste streams. These facilities are a key first step to re-enter materials into the recycling chain. However, so far there are no general methods to predict the performance of such sorting facilities, i.e. how efficiently the heterogeneous packaging waste is sorted into fractions with value for further recycling. In this paper, a model of the material flow in a sorting facility is presented, which allows changing the incoming waste composition, split factors on the sorting units as well as the setup of the sorting facility. The performance of the sorting facility is judged based on the purity of the output material (grade) and the recovery of the input material. A validation of the model was performed via a case study on Belgian post-consumer packaging waste with a selection of typical waste items that can be found in this stream. Moreover, the model was used to predict the possible sorting qualities of future Belgian post-consumer packaging waste after an extension of the allowed waste packaging items in the waste stream. Finally, a sensitivity analysis was performed on the split factors, which are a key data source in the model. Overall, the developed model is flexible and able to predict the performance of packaging waste sorting facilities as well as support waste management and design for recycling decisions, including future design of packaging, to ensure proper sorting and separation.

Eliminação de Resíduos , Gerenciamento de Resíduos , Fenômenos Físicos , Plásticos , Embalagem de Produtos , Reciclagem
Waste Manag ; 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33139193


Mechanical recycling is to date the most commonly applied recycling technology. However, mechanical recycling of post-consumer plastics still faces many challenges, such as the presence of odorous constituents. Accordingly, recycling industry is looking for cost-effective solutions to improve the current washing efficiencies. However, scientific literature and basic understanding of deodorization processes are still scarce, which impedes efficient industrial optimization. Therefore, this study aims to obtain more fundamental insights in the deodorization mechanisms of plastic films in different washing media such as water, detergent, caustic soda, and ethyl acetate as organic solvent. The removal efficiencies of 19 odor components with a wide range of physicochemical properties were quantified via GC-MS analysis. The results revealed that deodorization depends on various factors such as temperature and physicochemical properties as polarity, volatility, and molecular weight of the odor components and the washing media. It was shown that polar washing media are less efficient compared to apolar media or media containing a detergent, achieving efficiencies of around 50% and 90%, respectively. The desorption processes can be accurately modeled by the isotherm model of Fritz-Schlunder in combination with a reversible first order kinetic model for the deodorization kinetics. Aspen Plus® process simulations of a water-based washing process reveal that at least 60% fresh water is needed to avoid saturation of the medium and undesired (re-)adsorption of odor components onto the plastics, which results in a substantial ecological footprint.

Environ Sci Technol ; 54(20): 13282-13293, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32985869


Plastic packaging typically consists of a mixture of polymers and contains a whole range of components, such as paper, organic residue, halogens, and metals, which pose problems during recycling. Nevertheless, until today, limited detailed data are available on the full polymer composition of plastic packaging waste taking into account the separable packaging parts present in a certain waste stream, nor on their quantitative levels of (elemental) impurities. This paper therefore presents an unprecedented in-depth analysis of the polymer and elemental composition, including C, H, N, S, O, metals, and halogens, of commonly generated plastic packaging waste streams in European sorting facilities. Various analytical techniques are applied, including Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), polarized optical microscopy, ion chromatography, and inductively coupled plasma optical emission spectrometry (ICP-OES), on more than 100 different plastic packaging products, which are all separated into their different packaging subcomponents (e.g., a bottle into the bottle itself, the cap, and the label). Our results show that certain waste streams consist of mixtures of up to nine different polymers and contain various elements of the periodic table, in particular metals such as Ca, Al, Na, Zn, and Fe and halogens like Cl and F, occurring in concentrations between 1 and 3000 ppm. As discussed in the paper, both polymer and elemental impurities impede in many cases closed-loop recycling and require advanced pretreatment steps, increasing the overall recycling cost.

Waste Manag ; 104: 148-182, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978833


Additives are ubiquitously used in plastics to improve their functionality. However, they are not always desirable in their 'second life' and are a major bottleneck for chemical recycling. Although research on extraction techniques for efficient removal of additives is increasing, it resembles much like uncharted territory due to the broad variety of additives, plastics and removal techniques. Today solvent-based additive extraction techniques, solid-liquid extraction and dissolution-precipitation, are considered to be the most promising techniques to remove additives. This review focuses on the assessment of these techniques by making a link between literature and physicochemical principles such as diffusion and Hansen solubility theory. From a technical point of view, dissolution-precipitation is preferred to remove a broad spectrum of additives because diffusion limitations affect the solid-liquid extraction recoveries. Novel techniques such as accelerated solvent extraction (ASE) are promising for finding the balance between these two processes. Because of limited studies on the economic and environmental feasibility of extraction methods, this review also includes a basic economic and environmental assessment of two extreme cases for the extraction of additives. According to this assessment, the feasibility of additives removal depends strongly on the type of additive and plastic and also on the extraction conditions. In the best-case scenario at least 70% of solvent recovery is required to extract plasticizers from polyvinyl chloride (PVC) via dissolution-precipitation with tetrahydrofuran (THF), while solid-liquid extraction of phenolic antioxidants and a fatty acid amide slip agents from polypropylene (PP) with dichloromethane (DCM) can be economically viable even without intensive solvent recovery.

Plásticos , Reciclagem , Plastificantes , Cloreto de Polivinila , Solventes