Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 103(6): 1022-1029, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30526861

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies characterized by refractory seizures and developmental impairment. Sequencing approaches have identified causal genetic variants in only about 50% of individuals with DEEs.1-3 This suggests that unknown genetic etiologies exist, potentially in the ∼98% of human genomes not covered by exome sequencing (ES). Here we describe seven likely pathogenic variants in regions outside of the annotated coding exons of the most frequently implicated epilepsy gene, SCN1A, encoding the alpha-1 sodium channel subunit. We provide evidence that five of these variants promote inclusion of a "poison" exon that leads to reduced amounts of full-length SCN1A protein. This mechanism is likely to be broadly relevant to human disease; transcriptome studies have revealed hundreds of poison exons,4,5 including some present within genes encoding other sodium channels and in genes involved in neurodevelopment more broadly.6 Future research on the mechanisms that govern neuronal-specific splicing behavior might allow researchers to co-opt this system for RNA therapeutics.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsia/genética , Éxons/genética , Variação Genética/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Canais de Sódio/genética , Transcriptoma/genética
2.
Sci Rep ; 8(1): 16486, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405140

RESUMO

Schizophrenia is a common and severe mental disorder arising from complex gene-environment interactions affecting brain development and functioning. While a consensus on the neuroanatomical correlates of schizophrenia is emerging, much of its fundamental pathobiology remains unknown. In this study, we explore brain morphometry in mice with genetic susceptibility and phenotypic relevance to schizophrenia (Brd1+/- mice) using postmortem 3D MR imaging coupled with histology, immunostaining and regional mRNA marker analysis. In agreement with recent large-scale schizophrenia neuroimaging studies, Brd1+/- mice displayed subcortical abnormalities, including volumetric reductions of amygdala and striatum. Interestingly, we demonstrate that structural alteration in striatum correlates with a general loss of striatal neurons, differentially impacting subpopulations of medium-sized spiny neurons and thus potentially striatal output. Akin to parvalbumin interneuron dysfunction in patients, a decline in parvalbumin expression was noted in the developing cortex of Brd1+/- mice, mainly driven by neuronal loss within or near cortical layer V, which is rich in corticostriatal projection neurons. Collectively, our study highlights the translational value of the Brd1+/- mouse as a pre-clinical tool for schizophrenia research and provides novel insight into its developmental, structural, and cellular pathology.

3.
Expert Opin Ther Targets ; 22(12): 1017-1028, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372655

RESUMO

INTRODUCTION: Gene regulation is the term used to describe the mechanisms by which a cell increases or decreases the amount of a gene product (RNA or protein). In complex organs such as the brain, gene regulation is of the utmost importance; aberrations in the regulation of specific genes can lead to neurological disorders. Understanding these mechanisms can create new strategies for targeting these disorders and progress is being made. Two drugs that function at the RNA level (nusinersen and eteplirsen) have now been approved by the FDA for the treatment of Spinomuscular atrophy and Duchenne muscular dystrophy, respectively; several other compounds for neurological disease are currently being investigated in preclinical studies and clinical trials. Areas covered: We highlight how gene regulation at the level of RNA molecules can be used as a therapeutic strategy to treat neurological disorders. We provide examples of how such an approach is being studied or used and discuss the current hurdles. Expert opinion: Targeting gene expression at the RNA level is a promising strategy to treat genetic neurological disorders. Safe administration, long-term efficacy, and potential side effects, however, still need careful evaluation before RNA therapeutics can be applied on a larger scale.

4.
Ann Neurol ; 84(5): 788-795, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30269351

RESUMO

NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA