Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093112

RESUMO

Alzheimer's disease is the most common type of dementia, affecting millions of people worldwide. One of its main consequences is memory loss, which is related to downstream effectors of cyclic adenosine monophosphate (cAMP). A well-established strategy to avoid cAMP degradation is the inhibition of phosphodiesterase (PDE). In recent years, GEBR-32a has been shown to possess selective inhibitory properties against PDE type 4 family members, resulting in an improvement in spatial memory processes without the typical side effects that are usually correlated with this mechanism of action. In this work, we performed the HPLC chiral resolution and absolute configuration assignment of GEBR-32a. We developed an efficient analytical and semipreparative chromatographic method exploiting an amylose-based stationary phase, we studied the chiroptical properties of both enantiomers and we assigned their absolute configuration by 1H-NMR (nuclear magnetic resonance). Lastly, we measured the IC50 values of both enantiomers against both the PDE4D catalytic domain and the long PDE4D3 isoform. Results strongly support the notion that GEBR-32a inhibits the PDE4D enzyme by interacting with both the catalytic pocket and the regulatory domains.

2.
Cells ; 9(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093304

RESUMO

Diffuse astrocytomas are the most aggressive and lethal glial tumors of the central nervous system (CNS). Their high cellular heterogeneity and the presence of specific barriers, i.e., blood-brain barrier (BBB) and tumor barrier, make these cancers poorly responsive to all kinds of currently available therapies. Standard therapeutic approaches developed to prevent astrocytoma progression, such as chemotherapy and radiotherapy, do not improve the average survival of patients. However, the recent identification of key genetic alterations and molecular signatures specific for astrocytomas has allowed the advent of novel targeted therapies, potentially more efficient and characterized by fewer side effects. Among others, peptides have emerged as promising therapeutic agents, due to their numerous advantages when compared to standard chemotherapeutics. They can be employed as (i) pharmacologically active agents, which promote the reduction of tumor growth; or (ii) carriers, either to facilitate the translocation of drugs through brain, tumor, and cellular barriers, or to target tumor-specific receptors. Since several pathways are normally altered in malignant gliomas, better outcomes may result from combining multi-target strategies rather than targeting a single effector. In the last years, several preclinical studies with different types of peptides moved in this direction, providing promising results in murine models of disease and opening new perspectives for peptide applications in the treatment of high-grade brain tumors.

3.
J Nephrol ; 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974856

RESUMO

BACKGROUND: In this study we aimed to evaluate the usefulness of domain profiling of Beta-2-glycoprotein I(ß2GPI)-Domain-1 (D1) antibodies in relation to antiphospholipid antibodies (aPL)-related nephropathy (aPL-N) in patients with biopsy-proven lupus nephritis (LN). METHODS: Of 124 consecutive patients (96 women, mean age 45.5 ± 12.3 years, mean disease duration 14.7 ± 9.6 years) fulfilling the 1982 criteria for systemic lupus erythematosus (SLE), we identified 39 patients (mean age 39.84 ± 8.6 years, mean disease duration 11.3 ± 7.7 years) with the following characteristics: (a) biopsy-proven LN; (b) no previous diagnosis of antiphospholipid syndrome (APS) according to the current classification criteria. RESULTS: Patients with both LN and aPL-N had higher median aß2GPI-D1 antibody titres (220.1 CU, 25-75th IQ 29.1-334.2) as compared those with LN alone (46.5 CU, 25-75th IQ 12.5-75.1) (p = 0.0087). Median aß2GPI-D1 antibody titres were higher in patients with acute thrombotic microangiopathy (aTMA) (N = 7) (250.1 CU, 25-75th IQ 61.2-334.2) vs. with LN alone (46.5 CU, 25-75th IQ 12.5-75.1 CU) (p = 0.0009). Having a Global Antiphospholipid Syndrome Score > 10 confers an increased probability of having acute features of aTMA (OR 6.25, 95%CI 1.2-31.8). As compared to other aPL, aß2GPI-D1 antibodies have the best diagnostic accuracy for aTMA as evaluated by performances in Area Under the Curves in a ROC analysis. CONCLUSIONS: aß2GPI-D1 antibodies detection might provide a second-line assay to be performed in aß2GPI positive patients with LN, allowing more accurate stratification of the renal vascular involvement risk, thus potentially leading to a more tailored management.

4.
J Chem Inf Model ; 60(2): 756-765, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31809025

RESUMO

Significant progresses have been made to understand the molecular basis of the Sigma1 receptor (S1R) operating in normal and pathological conditions. S1R is a transmembrane protein that participates in a wide variety of processes at the central nervous system; hence, its function has been associated with mental and neurological disorders. Several ligands have been proposed to regulate the function of S1R revealing a high plasticity of the ligand-binding pocket. Previous drug-design studies have been mainly based on pharmacophore models; however, the recently revealed crystal structure of S1R provides an excellent opportunity for verifying previous predictions and for evaluating the binding of novel compounds. Interestingly, the crystal structure shows that the binding pocket of S1R is highly occluded from solvent; therefore, it is not clear how ligands access this site. In the present work, we applied steered molecular dynamics (SMD) simulations to open the occluded ligand-binding pocket in the S1R crystal structure and to determine the preferred ligand pathway to enter and exit the binding site. The intracellular surface of the ß-barrel ligand-binding region was found the most favorable route to accommodate ligands. This route supports the binding of RC-33 (our in-house-developed S1R modulator) and a new bivalent derivative that constitutes the first divalent structure shown to interact with S1R. Free energy calculations of these compounds associated with S1R agree with experimental Ki values and provide molecular insights of the binding mode of modulators that could access the S1R ligand-binding pocket through the cytoplasmic region.

5.
Heart Rhythm ; 17(2): 296-304, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31437535

RESUMO

BACKGROUND: Triadin is a protein expressed in cardiac and skeletal muscle that has an essential role in the structure and functional regulation of calcium release units and excitation-contraction coupling. Mutations in the triadin gene (TRDN) have been described in different forms of human arrhythmia syndromes with early onset and severe arrhythmogenic phenotype, including triadin knockout syndrome. OBJECTIVE: The purpose of this study was to characterize the pathogenetic mechanism underlying a case of severe pediatric malignant arrhythmia associated with a defect in the TRDN gene. METHODS: We used a trio whole exome sequencing approach to identify the genetic defect in a 2-year-old boy who had been resuscitated from sudden cardiac arrest and had frequent episodes of ventricular fibrillation and a family history positive for sudden death. We then performed in vitro functional analysis to investigate possible pathogenic mechanisms underlying this severe phenotype. RESULTS: We identified a novel homozygous missense variant (p.L56P) in the TRDN gene in the proband that was inherited from the heterozygous unaffected parents. Expression of a green fluorescent protein (GFP)-tagged mutant human cardiac triadin isoform (TRISK32-L56P-GFP) in heterologous systems revealed that the mutation alters protein dynamics. Furthermore, when co-expressed with the type 2 ryanodine receptor, caffeine-induced calcium release from TRISK32-L56P-GFP was relatively lower compared to that observed with the wild-type construct. CONCLUSION: The results of this study allowed us to hypothesize a pathogenic mechanism underlying this rare arrhythmogenic recessive form, suggesting that the mutant protein potentially can trigger arrhythmias by altering calcium homeostasis.

7.
Prog Neurobiol ; 186: 101743, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31870804

RESUMO

Reelin is an extracellular protein crucial for adult brain plasticity. Moreover, Reelin is protective against amyloid-ß (Aß) pathology in Alzheimer's Disease (AD), reducing plaque deposition, synaptic loss and cognitive decline. Given that Tau protein plays a key role in AD pathogenesis, and that the Reelin pathway modulates Tau phosphorylation, here we explored the involvement of Reelin in AD-related Tau pathology. We found that Reelin overexpression modulates the levels of Tau phosphorylation in AD-related epitopes in VLW mice expressing human mutant Tau. in vitro, Reelin reduced the Aß-induced missorting of axonal Tau and neurofilament proteins to dendrites. Reelin also reverted in vivo the toxic somatodendritic localization of phosphorylated Tau. Finally, overexpression of Reelin in VLW mice improved long-term potentiation and long-term memory cognitive performance thus masking the cognitive and physiological deficits in VLW mice. These data suggest that the Reelin pathway, which is also protective against Aß pathology, modulates fundamental traits of Tau pathology, strengthening the potential of Reelin as a therapeutic target in AD.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31840749

RESUMO

OBJECTIVES: To identify the aggregation of patients with aPL into different subgroups sharing common features in terms of clinical and laboratory phenotypes. METHODS: We applied a hierarchical cluster analysis from the multiple correspondence analysis to determine subgroups of patients according to clinical and laboratory characteristics in a cohort of subjects with confirmed aPL positivity who presented to our outpatient clinics from 2006 to 2018. RESULTS: A total of 486 patients [403 women; age 41.7 years (26)] were included, resulting in five clusters. Cluster 1 (n= 150) presented with thrombotic events (65.3% with venous thrombosis), with triple aPL positivity found in 34.7% of them (the highest rate among the different clusters). All the patients from cluster 2 (n = 91) had a confirmed diagnosis of SLE and the highest rate of anti-dsDNA positivity (91.7%). Cluster 3 included 79 women with pregnancy morbidity. Triple positivity was present in 3.8%, significantly lower when compared with Cluster 1 (34.7% versus 3.8%, P <0.01). Cluster 4 included 67 patients, 28 (41.8%) of whom with APS. Thrombotic events were observed in 23.9% patients. Cluster 4 had the highest rate of cytopenia, with thrombocytopenia as high 41.8% with no anti-dsDNA antibodies. Cluster 5 included 94 asymptomatic aPL carriers. CONCLUSION: While clusters 1, 2, 3 and 5 corresponded to well-known entities, cluster 4 might represent a bridging condition between pure primary APS and defined SLE, with lower thrombotic risk when compared with primary APS but higher general features such as ANA and cytopenia (mainly thrombocytopenia).

9.
Adv Exp Med Biol ; 1175: 227-272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583591

RESUMO

Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.


Assuntos
Esclerose Amiotrófica Lateral/fisiopatologia , Astrócitos/citologia , Neurônios Motores/patologia , Atrofia Muscular Espinal/fisiopatologia , Humanos , Mutação
10.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627428

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons (MNs), probably by a combination of cell- and non-cell-autonomous processes. The past decades have brought many important insights into the role of astrocytes in nervous system function and disease, including the implication in ALS pathogenesis possibly through the impairment of Ca2+-dependent astrocyte-MN cross-talk. In this respect, it has been recently proposed that altered astrocytic store-operated Ca2+ entry (SOCE) may underlie aberrant gliotransmitter release and astrocyte-mediated neurotoxicity in ALS. These observations prompted us to a thorough investigation of SOCE in primary astrocytes from the spinal cord of the SOD1(G93A) ALS mouse model in comparison with the SOD1(WT)-expressing controls. To this purpose, we employed, for the first time in the field, genetically-encoded Ca2+ indicators, allowing the direct assessment of Ca2+ fluctuations in different cell domains. We found increased SOCE, associated with decreased expression of the sarco-endoplasmic reticulum Ca2+-ATPase and lower ER resting Ca2+ concentration in SOD1(G93A) astrocytes compared to control cells. Such findings add novel insights into the involvement of astrocytes in ALS MN damage.

12.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323924

RESUMO

Small Ankyrins (sAnk1) are muscle-specific isoforms generated by the Ank1 gene that participate in the organization of the sarcoplasmic reticulum (SR) of striated muscles. Accordingly, the volume of SR tubules localized around the myofibrils is strongly reduced in skeletal muscle fibers of 4- and 10-month-old sAnk1 knockout (KO) mice, while additional structural alterations only develop with aging. To verify whether the lack of sAnk1 also alters intracellular Ca2+ handling, cytosolic Ca2+ levels were analyzed in stimulated skeletal muscle fibers from 4- and 10-month-old sAnk1 KO mice. The SR Ca2+ content was reduced in sAnk1 KO mice regardless of age. The amplitude of the Ca2+ transients induced by depolarizing pulses was decreased in myofibers of sAnk1 KO with respect to wild type (WT) fibers, while their voltage dependence was not affected. Furthermore, analysis of spontaneous Ca2+ release events (sparks) on saponin-permeabilized muscle fibers indicated that the frequency of sparks was significantly lower in fibers from 4-month-old KO mice compared to WT. Furthermore, both the amplitude and spatial spread of sparks were significantly smaller in muscle fibers from both 4- and 10-month-old KO mice compared to WT. These data suggest that the absence of sAnk1 results in an impairment of SR Ca2+ release, likely as a consequence of a decreased Ca2+ store due to the reduction of the SR volume in sAnk1 KO muscle fibers.


Assuntos
Anquirinas/metabolismo , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Anquirinas/genética , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Retículo Sarcoplasmático/genética
13.
Proc Natl Acad Sci U S A ; 116(31): 15716-15724, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31315980

RESUMO

In adult skeletal muscles, 2 junctophilin isoforms (JPH1 and JPH2) tether the sarcoplasmic reticulum (SR) to transverse tubule (T-tubule) membranes, generating stable membrane contact sites known as triads. JPHs are anchored to the membrane of the SR by a C-terminal transmembrane domain (TMD) and bind the T-tubule membrane through their cytosolic N-terminal region, which contains 8 lipid-binding (MORN) motifs. By combining expression of GFP-JPH1 deletion mutants in skeletal muscle fibers with in vitro biochemical experiments, we investigated the molecular determinants of JPH1 recruitment at triads in adult skeletal muscle fibers. We found that MORN motifs bind PI(4,5)P2 in the sarcolemma, but do not mediate the selective localization of JPH1 at the T-tubule compartment of triads. On the contrary, fusion proteins containing only the TMD of JPH1 were able to localize at the junctional SR compartment of the triad. Bimolecular fluorescence complementation experiments indicated that the TMD of JPH1 can form dimers, suggesting that the observed localization at triads may result from dimerization with the TMDs of resident JPH1. A second domain, capable of mediating homo- and heterodimeric interactions between JPH1 and JPH2 was identified in the cytosolic region. FRAP experiments revealed that removal of either one of these 2 domains in JPH1 decreases the association of the resulting mutant proteins with triads. Altogether, these results suggest that the ability to establish homo- and heterodimeric interactions with resident JPHs may support the recruitment and stability of newly synthesized JPHs at triads in adult skeletal muscle fibers.

14.
Front Neurol ; 10: 479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191425

RESUMO

Central Core Disease (CCD) is a congenital myopathy characterized by presence of amorphous central areas (or cores) lacking glycolytic/oxidative enzymes and mitochondria in skeletal muscle fibers. Most CCD families are linked to mutations in ryanodine receptor type-1 (RYR1), the gene encoding for the sarcoplasmic reticulum (SR) Ca2+ release channel of skeletal muscle. As no treatments are available for CCD, currently management of patients is essentially based on a physiotherapic approaches. Functional electrical stimulation (FES) is a technique used to deliver low energy electrical impulses to artificially stimulate selected skeletal muscle groups. Here we tested the efficacy of FES in counteracting muscle loss and improve function in the lower extremities of a 55-year-old female patient which was diagnosed with CCD at the age of 44. Genetic screening of the RyR1 gene identified a missense mutation (c.7354C>T) in exon 46 resulting in an amino acid substitution (p.R2452W) and a duplication (c.12853_12864dup12) in exon 91. The patient was treated with FES for 26 months and subjected before, during, and after training to a series of functional and structural assessments: measurement of maximum isometric force of leg extensor muscles, magnetic resonance imaging, a complete set of functional tests to assess mobility in activities of daily living, and analysis of muscle biopsies by histology and electron microscopy. All results point to an improvement in muscle structure and function induced by FES suggesting that this approach could be considered as an additional supportive measure to maintain/improve muscle function (and possibly reduce muscle loss) in CCD patients.

15.
Front Pharmacol ; 10: 490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156430

RESUMO

Introduction: Pancreatic cancer (PC) is one of the most lethal tumor worldwide, with no prognosis improvement over the past 20-years. The silent progressive nature of this neoplasia hampers the early diagnosis, and the surgical resection of the tumor, thus chemotherapy remains the only available therapeutic option. Sigma receptors (SRs) are a class of receptors proposed as new cancer therapeutic targets due to their over-expression in tumor cells and their involvement in cancer biology. The main localization of these receptors strongly suggests their potential role in ER unfolded protein response (ER-UPR), a condition frequently occurring in several pathological settings, including cancer. Our group has recently identified RC-106, a novel pan-SR modulator with good in vitro antiproliferative activities toward a panel of different cancer cell lines. In the present study, we investigated the in vitro properties and pharmacological profile of RC-106 in PC cell lines with the aim to identify a potential lead candidate for the treatment of this tumor. Methods: Pancreatic cancer cell lines Panc-1, Capan-1, and Capan-2 have been used in all experiments. S1R and TMEM97/S2R expression in PC cell lines was quantified by Real-Time qRT-PCR and Western Blot experiments. MTS assay was used to assess the antiproliferative effect of RC-106. The apoptotic properties of RC-106 was evaluated by TUNEL and caspase activation assays. GRP78/BiP, ATF4, and CHOP was quantified to evaluate ER-UPR. Proteasome activity was investigated by a specific fluorescent-based assay. Scratch wound healing assay was used to asses RC-106 effect on cell migration. In addition, we delineated the in vivo pharmacokinetic profile and pancreas distribution of RC-106 in male CD-1 mice. Results: Panc-1, Capan-1, and Capan-2 express both SRs. RC-106 exerts an antiproliferative and pro-apoptotic effect in all examined cell lines. Cells exposure to RC-106 induces the increase of the expression of ER-UPR related proteins, and the inhibition of proteasome activity. Moreover, RC-106 is able to decrease PC cell lines motility. The in vivo results show that RC-106 is more concentrated in pancreas than plasma. Conclusion: Overall, our data evidenced that the pan-SR modulator RC-106 is an optimal candidate for in vivo studies in animal models of PC.

16.
Trends Mol Med ; 25(9): 750-759, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31122805

RESUMO

Astrocytes fulfil several functions that collectively contribute to maintain the optimal microenvironment for neuronal function and survival. The multiplicity and complexity of these activities clearly indicates that the correct performance of astrocytes is crucial for the physiological functioning of the nervous system, and its derangement may contribute to the occurrence and progression of many neurological disorders. Although rectifying astrocyte malfunction has successfully counteracted disease pathogenesis and outcome in many preclinical settings, the translation of this revolutionary approach into clinical practice urges the development of innovative, safe, and effective systems for both the selective delivery of therapeutics to the astrocytes and astrocyte replacement strategies.

17.
Curr Opin Pharmacol ; 47: 102-109, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30959356

RESUMO

Peptides have emerged as novel and promising medicaments for the treatment of many human diseases, including tumors. In the treatment of cancer, they can be employed directly as bioactive therapeutics, promoting the reduction of tumor growth, but also as drug delivery systems, to facilitate the passage of drugs through cell and tissue barriers and to increase the selectivity of therapeutics for tumor cells. The advantages of peptides over standard chemotherapeutic agents are several-fold and include ease of synthesis, high efficacy, reduced side-effects, and low production cost. Numerous preclinical evaluations with different types of peptides have provided promising results in murine brain tumor models. Some of the most effective molecules were translated into clinical trials, opening new perspectives for the treatment of high-grade brain tumors and metastases.

18.
ACS Med Chem Lett ; 10(4): 615-620, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30996806

RESUMO

The key role of RNA-binding proteins (RBPs) in regulating post-transcriptional processes and their involvement in several pathologies (i.e., cancer and neurodegeneration) have highlighted their potential as therapeutic targets. In this scenario, Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs have been gaining growing attention. Compounds able to modulate the complex stability could constitute an innovative pharmacological strategy for the treatment of numerous diseases. Nevertheless, medicinal-chemistry efforts aimed at developing such compounds are still at an early stage. As part of our ongoing research in this field, we hereby present the rational design and synthesis of structurally novel HuR ligands, potentially acting as HuR-RNA interferers. The following assessment of the structural features of their interaction with HuR, combining saturation-transfer difference NMR and in silico studies, provides a guide for further research on the development of new effective interfering compounds of the HuR-RNA complex.

19.
Molecules ; 24(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909399

RESUMO

Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.


Assuntos
Antineoplásicos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo
20.
Phytochem Anal ; 30(4): 377-384, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30687967

RESUMO

INTRODUCTION: Marrubium vulgare is a herbal remedy presents in several European Pharmacopoeias and commonly marketed as white horehound. The chemotaxonomic marker of Marrubium genus is marrubiin and its content may change in response to biotic and abiotic stress. OBJECTIVE: Development of a microwave-assisted solvent extraction (MASE) methodology suitable for exhaustively extracting marrubiin from M. vulgare leaves, easily applicable to large sets of samples. Evaluation of the influence of copper(II) on marrubiin production. MATERIAL AND METHODS: M. vulgare leaves were dried, extracted exploiting MASE and analysed via high-performance liquid chromatography ultraviolet photodiode array detection (HPLC-UV/PAD) system. A design of experiments approach was adopted to select the best extraction conditions. Extraction parameters (solvent composition, extraction time and temperature), were studied applying two full factorial experimental designs in a sequential approach. To analyse samples, a rapid HPLC-UV/PAD method was set up. RESULTS: The best results in terms of marrubiin extraction yield were obtained extracting samples at 120°C with 100% ethanol, for 15 min (3 × 5 min microwave cycles). The developed methodology was successfully applied to matrices grown in Greenhouse conditions and under stress induced by copper(II), selected as model agent for abiotic stress. Progressively decreasing production of marrubiin was evidenced in connection with treatment with 80, 200 and 300 mg/L copper sulphate. CONCLUSION: An efficient methodology for the extraction and determination of the amount of marrubiin in large sets of samples of M. vulgare plants was developed. Results demonstrated that marrubiin is an easily detectable marker useful for evaluating M. vulgare reaction to stress.


Assuntos
Diterpenos/análise , Marrubium/química , Compostos Fitoquímicos/análise , Extratos Vegetais/isolamento & purificação , Biomarcadores/análise , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Marrubium/fisiologia , Micro-Ondas , Extratos Vegetais/química , Folhas de Planta/química , Projetos de Pesquisa , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA