Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
J Exp Med ; 218(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107914

RESUMO

NF-κB2/p100 (p100) is an inhibitor of κB (IκB) protein that is partially degraded to produce the NF-κB2/p52 (p52) transcription factor. Heterozygous NFKB2 mutations cause a human syndrome of immunodeficiency and autoimmunity, but whether autoimmunity arises from insufficiency of p52 or IκB function of mutated p100 is unclear. Here, we studied mice bearing mutations in the p100 degron, a domain that harbors most of the clinically recognized mutations and is required for signal-dependent p100 degradation. Distinct mutations caused graded increases in p100-degradation resistance. Severe p100-degradation resistance, due to inheritance of one highly degradation-resistant allele or two subclinical alleles, caused thymic medullary hypoplasia and autoimmune disease, whereas the absence of p100 and p52 did not. We inferred a similar mechanism occurs in humans, as the T cell receptor repertoires of affected humans and mice contained a hydrophobic signature of increased self-reactivity. Autoimmunity in autosomal dominant NFKB2 syndrome arises largely from defects in nonhematopoietic cells caused by the IκB function of degradation-resistant p100.

2.
J Immunol ; 205(7): 1731-1742, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32868409

RESUMO

The presentation of pathogen-derived peptides on MHC class I molecules is essential for the initiation of adaptive CD8+ T cell immunity, which in turn is critical for effective control of many significant human infections. The identification of immunogenic pathogen-derived epitopes and a detailed understanding of how they are recognized by TCRs is essential for the design of effective T cell-based vaccines. In this study, we have characterized the T cell recognition and immune responses in mice to two naturally presented influenza A virus-derived peptides previously identified from virally infected cells via mass spectrometry. These neuraminidase-derived peptides, NA181-190 (SGPDNGAVAV) and NA181-191 (SGPDNGAVAVL), are completely overlapping with the exception of a 1 aa extension at the C terminus of the longer peptide. This minor peptidic difference results in the induction of two completely independent and non-cross-reactive T cell populations that show distinct functional characteristics after influenza A virus infection of B6 mice. We show that the unique TCR reactivity to the overlapping peptides is present in the naive repertoire prior to immune expansion in B6 mice. Moreover, we provide a structural explanation underlying the distinct CD8+ T cell reactivities, which reinforces the concept that peptide length is a key determinant of Ag specificity in CD8+ T cell responses.

3.
Hepatology ; 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32865232

RESUMO

We would like to provide information that address the Letter to Editors submitted on 17 July 2020 by Lin and Yan regarding our publication.(1) We have provided a response to each point raised by the authors below.

4.
Proc Natl Acad Sci U S A ; 117(39): 24384-24391, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32913053

RESUMO

An improved understanding of human T cell-mediated immunity in COVID-19 is important for optimizing therapeutic and vaccine strategies. Experience with influenza shows that infection primes CD8+ T cell memory to peptides presented by common HLA types like HLA-A2, which enhances recovery and diminishes clinical severity upon reinfection. Stimulating peripheral blood mononuclear cells from COVID-19 convalescent patients with overlapping peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the clonal expansion of SARS-CoV-2-specific CD8+ and CD4+ T cells in vitro, with CD4+ T cells being robust. We identified two HLA-A*02:01-restricted SARS-CoV-2-specfic CD8+ T cell epitopes, A2/S269-277 and A2/Orf1ab3183-3191 Using peptide-HLA tetramer enrichment, direct ex vivo assessment of A2/S269 +CD8+ and A2/Orf1ab3183 +CD8+ populations indicated that A2/S269 +CD8+ T cells were detected at comparable frequencies (∼1.3 × 10-5) in acute and convalescent HLA-A*02:01+ patients. These frequencies were higher than those found in uninfected HLA-A*02:01+ donors (∼2.5 × 10-6), but low when compared to frequencies for influenza-specific (A2/M158) and Epstein-Barr virus (EBV)-specific (A2/BMLF1280) (∼1.38 × 10-4) populations. Phenotyping A2/S269 +CD8+ T cells from COVID-19 convalescents ex vivo showed that A2/S269 +CD8+ T cells were predominantly negative for CD38, HLA-DR, PD-1, and CD71 activation markers, although the majority of total CD8+ T cells expressed granzymes and/or perforin. Furthermore, the bias toward naïve, stem cell memory and central memory A2/S269 +CD8+ T cells rather than effector memory populations suggests that SARS-CoV-2 infection may be compromising CD8+ T cell activation. Priming with appropriate vaccines may thus be beneficial for optimizing CD8+ T cell immunity in COVID-19.


Assuntos
Betacoronavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Coronavirus/imunologia , Antígeno HLA-A2/imunologia , Pneumonia Viral/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T , Feminino , Humanos , Memória Imunológica , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Pandemias , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas Virais/química , Proteínas Virais/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-32962919

RESUMO

BACKGROUND: Anti-viral treatments to control cytomegalovirus (CMV) after lung transplantation (LTx) are associated with toxicity and anti-viral resistance. Cellular immunotherapy with virus-specific cytotoxic T cells has yielded promising results but requires donor/recipient matching. γδ T cells are involved in anti-viral immunity and can recognize antigens independently of major histocompatibility complex molecules and may not require the same level of matching. We assessed the phenotype of circulating γδ T cells after LTx to identify the candidate populations for CMV immunotherapy. METHODS: Peripheral blood mononuclear cells were isolated from lung transplant recipients before transplantation and at routine bronchoscopies after LTx. Patients were stratified by risk of CMV disease into moderate risk (recipient CMV seropositive, n = 15) or high risk (HR) (recipient CMV seronegative/donor CMV seropositive, n = 10). CMV replication was classified as polymerase chain reaction positive (>150 copies/ml) in blood and/or bronchoalveolar lavage within the first 18 months. The phenotype of γδ T cells was assessed by multicolor flow cytometry, and T-cell receptor (TCR) sequences were determined by deep sequencing. RESULTS: In HR lung transplant recipients with CMV replication, we observed striking phenotypic changes in γδ T cells, marked by an increase in the proportion of effector Vδ1+ γδ T cells expressing the activating natural killer cell receptor NKG2C. Moreover, we observed a remarkable increase in TCR diversity. CONCLUSIONS: NKG2C+ Vδ1+ γδ T cells were associated with CMV replication and may indicate their potential to control infection. As such, we propose that they could be a potential target for cellular therapy against CMV.

6.
Proc Natl Acad Sci U S A ; 117(37): 22944-22952, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868441

RESUMO

γδ T cells form an abundant part of the human cellular immune system, where they respond to tissue damage, infection, and cancer. The spectrum of known molecular targets recognized by Vδ1-expressing γδ T cells is becoming increasingly diverse. Here we describe human γδ T cells that recognize CD1b, a lipid antigen-presenting molecule, which is inducibly expressed on monocytes and dendritic cells. Using CD1b tetramers to study multiple donors, we found that many CD1b-specific γδ T cells use Vδ1. Despite their common use of Vδ1, three CD1b-specific γδ T cell receptors (TCRs) showed clear differences in the surface of CD1b recognized, the requirement for lipid antigens, and corecognition of butryophilin-like proteins. Several Vγ segments were present among the CD1b-specific TCRs, but chain swap experiments demonstrated that CD1b specificity was mediated by the Vδ1 chain. One of the CD1b-specific Vδ1+ TCRs paired with Vγ4 and shows dual reactivity to CD1b and butyrophilin-like proteins. αß TCRs typically recognize the peptide display platform of MHC proteins. In contrast, our results demonstrate the use of rearranged receptors to mediate diverse modes of recognition across the surface of CD1b in ways that do and do not require carried lipids.


Assuntos
Antígenos CD1/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Apresentação do Antígeno , Antígenos CD1/imunologia , Cristalografia por Raios X/métodos , Humanos , Linfócitos Intraepiteliais/fisiologia , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Modelos Moleculares , Monócitos/metabolismo , Linfócitos T/imunologia
7.
Proc Natl Acad Sci U S A ; 117(40): 24974-24985, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958637

RESUMO

The antigen-presenting molecule MR1 (MHC class I-related protein 1) presents metabolite antigens derived from microbial vitamin B2 synthesis to activate mucosal-associated invariant T (MAIT) cells. Key aspects of this evolutionarily conserved pathway remain uncharacterized, including where MR1 acquires ligands and what accessory proteins assist ligand binding. We answer these questions by using a fluorophore-labeled stable MR1 antigen analog, a conformation-specific MR1 mAb, proteomic analysis, and a genome-wide CRISPR/Cas9 library screen. We show that the endoplasmic reticulum (ER) contains a pool of two unliganded MR1 conformers stabilized via interactions with chaperones tapasin and tapasin-related protein. This pool is the primary source of MR1 molecules for the presentation of exogenous metabolite antigens to MAIT cells. Deletion of these chaperones reduces the ER-resident MR1 pool and hampers antigen presentation and MAIT cell activation. The MR1 antigen-presentation pathway thus co-opts ER chaperones to fulfill its unique ability to present exogenous metabolite antigens captured within the ER.

8.
Commun Biol ; 3(1): 464, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826940

RESUMO

Galectins are a family of glycan-binding molecules with a characteristic affinity for ß-D-glycosides that mediate a variety of important cellular functions, including immune and inflammatory responses. Galectin-11 (LGALS-11) has been recently identified as a mediator induced specifically in animals against gastrointestinal nematodes and can interfere with parasite growth and development. Here, we report that at least two natural genetic variants of LGALS-11 exist in sheep, and demonstrate fundamental differences in anti-parasitic activity, correlated with their ability to dimerise. This study improves our understanding of the role of galectins in the host immune and inflammatory responses against parasitic nematodes and provides a basis for genetic studies toward selective breeding of animals for resistance to parasites.

9.
J Immunol ; 205(6): 1709-1717, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32817368

RESUMO

The generation of reliable mAb of unique and desired specificities serves as a valuable technology to study protein expression and function. However, standard approaches to mAb generation usually involve large-scale protein purification and intensive screening. In this study, we describe an optimized high-throughput proof-of-principle method for the expanded generation, enrichment, and screening of mouse hybridomas secreting mAb specific for a protein of interest. Briefly, we demonstrate that small amounts of a biotinylated protein of interest can be used to generate tetramers for use as prime-boost immunogens, followed by selective enrichment of Ag-specific B cells by magnetic sorting using the same tetramers prior to hybridoma generation. This serves two purposes: 1) to effectively expand both low- and high-affinity B cells specific for the antigenic bait during immunization and 2) to minimize subsequent laborious hybridoma efforts by positive selection of Ag-specific, Ab-secreting cells prior to hybridoma fusion and validation screening. Finally, we employ a rapid and inexpensive screening technology, CELLISA, a high-throughput validation method that uses a chimeric Ag fused to the CD3ζ signaling domain expressed on enzyme-generating reporter cells; these reporters can detect specific mAb in hybridoma supernatants via plate-bound Ab-capture arrays, thereby easing screening. Using this strategy, we generated and characterized novel mouse mAb specific for a viral immunoevasin, the mouse CMV m12 protein, and suggest that these mAb may protect mice from CMV infection via passive immunity.

10.
J Immunol ; 205(6): 1524-1534, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32817371

RESUMO

EBV is one of the most common viruses found in humans and is prototypic of a persistent viral infection characterized by periods of latency. Across many HLA class I molecules, the latent-specific CD8+ T cell response is focused on epitopes derived from the EBNA-3 protein family. In the case of HLA-B*07:02 restriction, a highly frequent class I allele, the T cell response is dominated by an epitope spanning residues 379-387 of EBNA-3 (RPPIFIRRL [EBVRPP]). However, little is known about either the TCR repertoire specific for this epitope or the molecular basis for this observed immunodominance. The EBVRPP CD8+ T cell response was common among both EBV-seropositive HLA-B*07:02+ healthy and immunocompromised individuals. Similar TCRs were identified in EBVRPP-specific CD8+ T cell repertoires across multiple HLA-B7+ individuals, indicating a shared Ag-driven bias in TCR usage. In particular, TRBV4-1 and TRAV38 usage was observed in five out of six individuals studied. In this study, we report the crystal structure of a TRBV4-1+ TCR-HLA-B*07:02/EBVRPP complex, which provides a molecular basis for the observed TRBV4-1 bias. These findings enhance our understanding of the CD8+ T cell response toward a common EBV determinant in HLA-B*07:02+ individuals.

11.
J Biol Chem ; 295(42): 14445-14457, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817339

RESUMO

MR1 presents vitamin B-related metabolites to mucosal associated invariant T (MAIT) cells, which are characterized, in part, by the TRAV1-2+ αß T cell receptor (TCR). In addition, a more diverse TRAV1-2- MR1-restricted T cell repertoire exists that can possess altered specificity for MR1 antigens. However, the molecular basis of how such TRAV1-2- TCRs interact with MR1-antigen complexes remains unclear. Here, we describe how a TRAV12-2+ TCR (termed D462-E4) recognizes an MR1-antigen complex. We report the crystal structures of the unliganded D462-E4 TCR and its complex with MR1 presenting the riboflavin-based antigen 5-OP-RU. Here, the TRBV29-1 ß-chain of the D462-E4 TCR binds over the F'-pocket of MR1, whereby the complementarity-determining region (CDR) 3ß loop surrounded and projected into the F'-pocket. Nevertheless, the CDR3ß loop anchored proximal to the MR1 A'-pocket and mediated direct contact with the 5-OP-RU antigen. The D462-E4 TCR footprint on MR1 contrasted that of the TRAV1-2+ and TRAV36+ TCRs' docking topologies on MR1. Accordingly, diverse MR1-restricted T cell repertoire reveals differential docking modalities on MR1, thus providing greater scope for differing antigen specificities.

12.
PLoS Pathog ; 16(8): e1008714, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750095

RESUMO

Seasonal influenza virus infections cause 290,000-650,000 deaths annually and severe morbidity in 3-5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes were however unknown. Here, we probed immunodominance status of influenza-specific universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were generally immunodominant, A2/M158+CD8+ T-cells were markedly diminished (subdominant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses. A2/M158+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained optimal public TRBV19/TRAV27 TCRαß clonotypes and displayed highly polyfunctional and proliferative capacity, while A2/M158+CD8+ T cells in HLA-B*27:05-expressing donors were subdominant, with largely distinct TCRαß clonotypes and consequently markedly reduced avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodominance patterns and immunodomination within human influenza-specific CD8+ T-cells. Accordingly, our work highlights the importance of understanding immunodominance hierarchies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza and other infectious diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-B27/genética , Epitopos Imunodominantes/imunologia , Influenza Humana/imunologia , Adulto , Idoso , Epitopos de Linfócito T/imunologia , Feminino , Antígeno HLA-B27/imunologia , Humanos , Epitopos Imunodominantes/genética , Memória Imunológica , Vírus da Influenza A/fisiologia , Influenza Humana/genética , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Nat Commun ; 11(1): 3755, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709874

RESUMO

Obesity is associated with low-grade chronic inflammation promoting insulin-resistance and diabetes. Gut microbiota dysbiosis is a consequence as well as a driver of obesity and diabetes. Mucosal-associated invariant T cells (MAIT) are innate-like T cells expressing a semi-invariant T cell receptor restricted to the non-classical MHC class I molecule MR1 presenting bacterial ligands. Here we show that during obesity MAIT cells promote inflammation in both adipose tissue and ileum, leading to insulin resistance and impaired glucose and lipid metabolism. MAIT cells act in adipose tissue by inducing M1 macrophage polarization in an MR1-dependent manner and in the gut by inducing microbiota dysbiosis and loss of gut integrity. Both MAIT cell-induced tissue alterations contribute to metabolic dysfunction. Treatment with MAIT cell inhibitory ligand demonstrates its potential as a strategy against inflammation, dysbiosis and metabolic disorders.


Assuntos
Disbiose/imunologia , Inflamação/patologia , Intestinos/patologia , Células T Invariáveis Associadas à Mucosa/patologia , Obesidade/metabolismo , Tecido Adiposo/patologia , Animais , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Disbiose/complicações , Microbioma Gastrointestinal , Teste de Tolerância a Glucose , Íleo/patologia , Inflamação/complicações , Mucosa Intestinal/patologia , Intestinos/diagnóstico por imagem , Ligantes , Contagem de Linfócitos , Macrófagos/metabolismo , Imagem por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/diagnóstico por imagem , Fenótipo , Pterinas/farmacologia , Receptores de Antígenos de Linfócitos T/metabolismo
14.
Sci Immunol ; 5(49)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709702

RESUMO

The role unconventional T cells play in protective immunity in humans is unclear. Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset restricted to the antigen-presenting molecule MR1. Here, we report the discovery of a patient homozygous for a rare Arg31His (R9H in the mature protein) mutation in MR1 who has a history of difficult-to-treat viral and bacterial infections. MR1R9H was unable to present the potent microbially derived MAIT cell stimulatory ligand. The MR1R9H crystal structure revealed that the stimulatory ligand cannot bind due to the mutation lying within, and causing structural perturbation to, the ligand-binding domain of MR1. While MR1R9H could bind and be up-regulated by a MAIT cell inhibitory ligand, the patient lacked circulating MAIT cells. This shows the importance of the stimulatory ligand for MAIT cell selection in humans. The patient had an expanded γδ T cell population, indicating a compensatory interplay between these unconventional T cell subsets.

15.
iScience ; 23(7): 101258, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: covidwho-591772

RESUMO

Many of the SARS-CoV-2 proteins have related counterparts across the Severe Acute Respiratory Syndrome (SARS-CoV) family. One such protein is non-structural protein 9 (Nsp9), which is thought to mediate viral replication, overall virulence, and viral genomic RNA reproduction. We sought to better characterize the SARS-CoV-2 Nsp9 and subsequently solved its X-ray crystal structure, in an apo form and, unexpectedly, in a peptide-bound form with a sequence originating from a rhinoviral 3C protease sequence (LEVL). The SARS-CoV-2 Nsp9 structure revealed the high level of structural conservation within the Nsp9 family. The exogenous peptide binding site is close to the dimer interface and impacted the relative juxtapositioning of the monomers within the homodimer. We have established a protocol for the production of SARS-CoV-2 Nsp9, determined its structure, and identified a peptide-binding site that warrants further study to understanding Nsp9 function.

16.
J Cell Sci ; 133(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32591485

RESUMO

The affinity of T-cell receptors (TCRs) for major histocompatibility complex molecules (MHCs) presenting cognate antigens likely determines whether T cells initiate immune responses, or not. There exist few measurements of two-dimensional (2D) TCR-MHC interactions, and the effect of auxiliary proteins on binding is unexplored. Here, Jurkat T-cells expressing the MHC molecule HLA-DQ8-glia-α1 and the ligand of an adhesion protein (rat CD2) were allowed to bind supported lipid bilayers (SLBs) presenting fluorescently labelled L3-12 TCR and rat CD2, allowing measurements of binding unconfounded by cell signaling effects or co-receptor binding. The 2D K d for L3-12 TCR binding to HLA-DQ8-glia-α1, of 14±5 molecules/µm2 (mean±s.d.), was only marginally influenced by including CD2 up to ∼200 bound molecules/µm2 but higher CD2 densities reduced the affinity up to 1.9-fold. Cell-SLB contact size increased steadily with ligand density without affecting binding for contacts at up to ∼20% of total cell area, but beyond this lamellipodia appeared, giving an apparent increase in bound receptors of up to 50%. Our findings show how parameters other than the specific protein-protein interaction can influence binding behavior at cell-cell contacts.

17.
iScience ; 23(7): 101258, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32592996

RESUMO

Many of the SARS-CoV-2 proteins have related counterparts across the Severe Acute Respiratory Syndrome (SARS-CoV) family. One such protein is non-structural protein 9 (Nsp9), which is thought to mediate viral replication, overall virulence, and viral genomic RNA reproduction. We sought to better characterize the SARS-CoV-2 Nsp9 and subsequently solved its X-ray crystal structure, in an apo form and, unexpectedly, in a peptide-bound form with a sequence originating from a rhinoviral 3C protease sequence (LEVL). The SARS-CoV-2 Nsp9 structure revealed the high level of structural conservation within the Nsp9 family. The exogenous peptide binding site is close to the dimer interface and impacted the relative juxtapositioning of the monomers within the homodimer. We have established a protocol for the production of SARS-CoV-2 Nsp9, determined its structure, and identified a peptide-binding site that warrants further study to understanding Nsp9 function.

18.
Proc Natl Acad Sci U S A ; 117(21): 11636-11647, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32404419

RESUMO

Micropolymorphisms within human leukocyte antigen (HLA) class I molecules can change the architecture of the peptide-binding cleft, leading to differences in peptide presentation and T cell recognition. The impact of such HLA variation on natural killer (NK) cell recognition remains unclear. Given the differential association of HLA-B*57:01 and HLA-B*57:03 with the control of HIV, recognition of these HLA-B57 allomorphs by the killer cell immunoglobulin-like receptor (KIR) 3DL1 was compared. Despite differing by only two polymorphic residues, both buried within the peptide-binding cleft, HLA-B*57:01 more potently inhibited NK cell activation. Direct-binding studies showed KIR3DL1 to preferentially recognize HLA-B*57:01, particularly when presenting peptides with positively charged position (P)Ω-2 residues. In HLA-B*57:01, charged PΩ-2 residues were oriented toward the peptide-binding cleft and away from KIR3DL1. In HLA-B*57:03, the charged PΩ-2 residues protruded out from the cleft and directly impacted KIR3DL1 engagement. Accordingly, KIR3DL1 recognition of HLA class I ligands is modulated by both the peptide sequence and conformation, as determined by the HLA polymorphic framework, providing a rationale for understanding differences in clinical associations.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Células Matadoras Naturais/fisiologia , Polimorfismo Genético/genética , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Ativação Linfocitária/genética , Modelos Moleculares , Polimorfismo Genético/fisiologia , Receptores KIR/genética
19.
Proc Natl Acad Sci U S A ; 117(19): 10465-10475, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341160

RESUMO

The antigen-presenting molecule MR1 presents riboflavin-based metabolites to Mucosal-Associated Invariant T (MAIT) cells. While MR1 egress to the cell surface is ligand-dependent, the ability of small-molecule ligands to impact on MR1 cellular trafficking remains unknown. Arising from an in silico screen of the MR1 ligand-binding pocket, we identify one ligand, 3-([2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl]formamido)propanoic acid, DB28, as well as an analog, methyl 3-([2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl]formamido)propanoate, NV18.1, that down-regulate MR1 from the cell surface and retain MR1 molecules in the endoplasmic reticulum (ER) in an immature form. DB28 and NV18.1 compete with the known MR1 ligands, 5-OP-RU and acetyl-6-FP, for MR1 binding and inhibit MR1-dependent MAIT cell activation. Crystal structures of the MAIT T cell receptor (TCR) complexed with MR1-DB28 and MR1-NV18.1, show that these two ligands reside within the A'-pocket of MR1. Neither ligand forms a Schiff base with MR1 molecules; both are nevertheless sequestered by a network of hydrophobic and polar contacts. Accordingly, we define a class of compounds that inhibits MR1 cellular trafficking.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariáveis Associadas à Mucosa/metabolismo , Apresentação do Antígeno , Linhagem Celular , Membrana Celular/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica/genética , Humanos , Ligantes , Ativação Linfocitária , Transporte Proteico , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Riboflavina/metabolismo , Células THP-1
20.
J Infect Dis ; 222(6): 995-1007, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32267943

RESUMO

BACKGROUND: In human blood, mucosal-associated invariant T (MAIT) cells are abundant T cells that recognize antigens presented on non-polymorphic major histocompatibility complex-related 1 (MR1) molecules. The MAIT cells are activated by mycobacteria, and prior human studies indicate that blood frequencies of MAIT cells, defined by cell surface markers, decline during tuberculosis (TB) disease, consistent with redistribution to the lungs. METHODS: We tested whether frequencies of blood MAIT cells were altered in patients with TB disease relative to healthy Mycobacterium tuberculosis-exposed controls from Peru and South Africa. We quantified their frequencies using MR1 tetramers loaded with 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil. RESULTS: Unlike findings from prior studies, frequencies of blood MAIT cells were similar among patients with TB disease and latent and uninfected controls. In both cohorts, frequencies of MAIT cells defined by MR1-tetramer staining and coexpression of CD161 and the T-cell receptor alpha variable gene TRAV1-2 were strongly correlated. Disease severity captured by body mass index or TB disease transcriptional signatures did not correlate with MAIT cell frequencies in patients with TB. CONCLUSIONS: Major histocompatibility complex (MHC)-related 1-restrictied MAIT cells are detected at similar levels with tetramers or surface markers. Unlike MHC-restricted T cells, blood frequencies of MAIT cells are poor correlates of TB disease but may play a role in pathophysiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA