Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
1.
J Endocr Soc ; 6(7): bvac072, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35673403

RESUMO

The present study was designed to evaluate if mode of delivery at birth is associated with body mass index (BMI) and glucose homeostasis traits in later life, controlling for possible confounders, including maternal history of diabetes. Data were obtained through a racially diverse, prospective cohort study of nondiabetic, older adults, the Microbiome and Insulin Longitudinal Evaluation Study (MILES). We used generalized linear models to estimate the association between mode of delivery and glycemic status, BMI (kg/m2), waist circumference (cm), fasting glucose, fasting insulin, insulin secretion, insulin sensitivity, and insulin clearance. Further, we estimated the direct and indirect effects of cesarean delivery on glucose and insulin-related traits, as mediated by BMI status. Relative to vaginal delivery, cesarean delivery was associated with a significantly higher BMI (adjusted beta [aß] 3.53 kg/m2; 95% CI 0.15, 6.91) and fasting glucose (aß 5.12; 95% CI 0.01, 10.23), a 14% decrease in insulin sensitivity (aß -0.14; 95% CI -0.28, -0.01), and a 58% increased risk (adjusted relative risk [aRR] 1.58; 95% CI 1.08, 2.31) for prediabetes/diabetes. Associations were mediated in part by BMI, with the strongest evidence observed for glycemic status (proportion mediated 22.6%; P = .03), fasting insulin (proportion mediated 58.0%; P = .05), and insulin sensitivity index (proportion mediated 45.9%; P = .05). Independent of mediation, a significant direct effect of cesarean delivery on glycemic status was observed (aRR 1.88; 95% CI 1.16, 2.60). Cesarean delivery may lead to reduced insulin sensitivity and, ultimately, increased risk for developing prediabetes and diabetes.

2.
Circ Res ; : 101161CIRCRESAHA122320991, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658476

RESUMO

BACKGROUND: Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS: Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS: A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS: Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.

3.
Nat Commun ; 13(1): 3549, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729114

RESUMO

In a multi-stage analysis of 52,436 individuals aged 17-90 across diverse cohorts and biobanks, we train, test, and evaluate a polygenic risk score (PRS) for hypertension risk and progression. The PRS is trained using genome-wide association studies (GWAS) for systolic, diastolic blood pressure, and hypertension, respectively. For each trait, PRS is selected by optimizing the coefficient of variation (CV) across estimated effect sizes from multiple potential PRS using the same GWAS, after which the 3 trait-specific PRSs are combined via an unweighted sum called "PRSsum", forming the HTN-PRS. The HTN-PRS is associated with both prevalent and incident hypertension at 4-6 years of follow up. This association is further confirmed in age-stratified analysis. In an independent biobank of 40,201 individuals, the HTN-PRS is confirmed to be predictive of increased risk for coronary artery disease, ischemic stroke, type 2 diabetes, and chronic kidney disease.

4.
Nat Genet ; 54(6): 783-791, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35697868

RESUMO

Right ventricular (RV) structure and function influence the morbidity and mortality from coronary artery disease (CAD), dilated cardiomyopathy (DCM), pulmonary hypertension and heart failure. Little is known about the genetic basis of RV measurements. Here we perform genome-wide association analyses of four clinically relevant RV phenotypes (RV end-diastolic volume, RV end-systolic volume, RV stroke volume, RV ejection fraction) from cardiovascular magnetic resonance images, using a state-of-the-art deep learning algorithm in 29,506 UK Biobank participants. We identify 25 unique loci associated with at least one RV phenotype at P < 2.27 ×10-8, 17 of which are validated in a combined meta-analysis (n = 41,830). Several candidate genes overlap with Mendelian cardiomyopathy genes and are involved in cardiac muscle contraction and cellular adhesion. The RV polygenic risk scores (PRSs) are associated with DCM and CAD. The findings substantially advance our understanding of the genetic underpinning of RV measurements.


Assuntos
Cardiomiopatia Dilatada , Disfunção Ventricular Direita , Estudo de Associação Genômica Ampla , Ventrículos do Coração , Humanos , Volume Sistólico/fisiologia , Disfunção Ventricular Direita/complicações
5.
Am J Hum Genet ; 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716666

RESUMO

Despite the growing number of genome-wide association studies (GWASs), it remains unclear to what extent gene-by-gene and gene-by-environment interactions influence complex traits in humans. The magnitude of genetic interactions in complex traits has been difficult to quantify because GWASs are generally underpowered to detect individual interactions of small effect. Here, we develop a method to test for genetic interactions that aggregates information across all trait-associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between European American and admixed African American individuals have the same causal effect sizes. We hypothesize that in African Americans, the presence of genetic interactions will drive the causal effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African ancestry. We apply our method to two traits: gene expression in 296 African Americans and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our analysis of gene expression; for LDL-C, we observe a similar point estimate, although this is not significant, most likely due to lower statistical power. These results suggest that gene-by-gene or gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.

7.
Am J Hum Genet ; 109(6): 1175-1181, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35504290

RESUMO

Current publicly available tools that allow rapid exploration of linkage disequilibrium (LD) between markers (e.g., HaploReg and LDlink) are based on whole-genome sequence (WGS) data from 2,504 individuals in the 1000 Genomes Project. Here, we present TOP-LD, an online tool to explore LD inferred with high-coverage (∼30×) WGS data from 15,578 individuals in the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. TOP-LD provides a significant upgrade compared to current LD tools, as the TOPMed WGS data provide a more comprehensive representation of genetic variation than the 1000 Genomes data, particularly for rare variants and in the specific populations that we analyzed. For example, TOP-LD encompasses LD information for 150.3, 62.2, and 36.7 million variants for European, African, and East Asian ancestral samples, respectively, offering 2.6- to 9.1-fold increase in variant coverage compared to HaploReg 4.0 or LDlink. In addition, TOP-LD includes tens of thousands of structural variants (SVs). We demonstrate the value of TOP-LD in fine-mapping at the GGT1 locus associated with gamma glutamyltransferase in the African ancestry participants in UK Biobank. Beyond fine-mapping, TOP-LD can facilitate a wide range of applications that are based on summary statistics and estimates of LD. TOP-LD is freely available online.


Assuntos
Estudo de Associação Genômica Ampla , Medicina de Precisão , Humanos , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
8.
Brain ; 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35511193

RESUMO

Cerebral small vessel disease is a leading cause of stroke and a major contributor to cognitive decline and dementia, but our understanding of specific genes underlying the cause of sporadic cerebral small vessel disease is limited. We report a genome-wide association study and a whole-exome association study on a composite extreme phenotype of cerebral small vessel disease derived from its most common MRI features: white matter hyperintensities and lacunes. Seventeen population-based cohorts of older persons with MRI measurements and genome-wide genotyping (n = 41 326), whole-exome sequencing (n = 15 965), or exome chip (n = 5249) data contributed 13 776 and 7079 extreme small vessel disease samples for the genome-wide association study and whole-exome association study, respectively. The genome-wide association study identified significant association of common variants in 11 loci with extreme small vessel disease, of which the chr12q24.11 locus was not previously reported to be associated with any MRI marker of cerebral small vessel disease. The whole-exome association study identified significant associations of extreme small vessel disease with common variants in the 5' UTR region of EFEMP1 (chr2p16.1) and one probably damaging common missense variant in TRIM47 (chr17q25.1). Mendelian randomization supports the causal association of extensive small vessel disease severity with increased risk of stroke and Alzheimer's disease. Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. We observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology. Overall, our comprehensive gene-mapping study and preliminary functional evaluation suggests a putative role of TRIM47 in the pathophysiology of cerebral small vessel disease, making it an important candidate for extensive in vivo explorations and future translational work.

9.
Front Endocrinol (Lausanne) ; 13: 863893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592775

RESUMO

Polygenic risk scores (PRSs) aggregate the effects of genetic variants across the genome and are used to predict risk of complex diseases, such as obesity. Current PRSs only include common variants (minor allele frequency (MAF) ≥1%), whereas the contribution of rare variants in PRSs to predict disease remains unknown. Here, we examine whether augmenting the standard common variant PRS (PRScommon) with a rare variant PRS (PRSrare) improves prediction of obesity. We used genome-wide genotyped and imputed data on 451,145 European-ancestry participants of the UK Biobank, as well as whole exome sequencing (WES) data on 184,385 participants. We performed single variant analyses (for both common and rare variants) and gene-based analyses (for rare variants) for association with BMI (kg/m2), obesity (BMI ≥ 30 kg/m2), and extreme obesity (BMI ≥ 40 kg/m2). We built PRSscommon and PRSsrare using a range of methods (Clumping+Thresholding [C+T], PRS-CS, lassosum, gene-burden test). We selected the best-performing PRSs and assessed their performance in 36,757 European-ancestry unrelated participants with whole genome sequencing (WGS) data from the Trans-Omics for Precision Medicine (TOPMed) program. The best-performing PRScommon explained 10.1% of variation in BMI, and 18.3% and 22.5% of the susceptibility to obesity and extreme obesity, respectively, whereas the best-performing PRSrare explained 1.49%, and 2.97% and 3.68%, respectively. The PRSrare was associated with an increased risk of obesity and extreme obesity (ORobesity = 1.37 per SDPRS, P obesity = 1.7x10-85; ORextremeobesity = 1.55 per SDPRS, P extremeobesity = 3.8x10-40), which was attenuated, after adjusting for PRScommon (ORobesity = 1.08 per SDPRS, P obesity = 9.8x10-6; ORextremeobesity= 1.09 per SDPRS, P extremeobesity = 0.02). When PRSrare and PRScommon are combined, the increase in explained variance attributed to PRSrare was small (incremental Nagelkerke R2 = 0.24% for obesity and 0.51% for extreme obesity). Consistently, combining PRSrare to PRScommon provided little improvement to the prediction of obesity (PRSrare AUC = 0.591; PRScommon AUC = 0.708; PRScombined AUC = 0.710). In summary, while rare variants show convincing association with BMI, obesity and extreme obesity, the PRSrare provides limited improvement over PRScommon in the prediction of obesity risk, based on these large populations.


Assuntos
Estudo de Associação Genômica Ampla , Obesidade , Frequência do Gene , Variação Genética , Humanos , Obesidade/epidemiologia , Obesidade/genética , Sequenciamento Completo do Genoma
10.
NAR Genom Bioinform ; 4(2): lqac034, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35591888

RESUMO

Mitochondrial diseases are a heterogeneous group of disorders that can be caused by mutations in the nuclear or mitochondrial genome. Mitochondrial DNA (mtDNA) variants may exist in a state of heteroplasmy, where a percentage of DNA molecules harbor a variant, or homoplasmy, where all DNA molecules have the same variant. The relative quantity of mtDNA in a cell, or copy number (mtDNA-CN), is associated with mitochondrial function, human disease, and mortality. To facilitate accurate identification of heteroplasmy and quantify mtDNA-CN, we built a bioinformatics pipeline that takes whole genome sequencing data and outputs mitochondrial variants, and mtDNA-CN. We incorporate variant annotations to facilitate determination of variant significance. Our pipeline yields uniform coverage by remapping to a circularized chrM and by recovering reads falsely mapped to nuclear-encoded mitochondrial sequences. Notably, we construct a consensus chrM sequence for each sample and recall heteroplasmy against the sample's unique mitochondrial genome. We observe an approximately 3-fold increased association with age for heteroplasmic variants in non-homopolymer regions and, are better able to capture genetic variation in the D-loop of chrM compared to existing software. Our bioinformatics pipeline more accurately captures features of mitochondrial genetics than existing pipelines that are important in understanding how mitochondrial dysfunction contributes to disease.

11.
Commun Biol ; 5(1): 362, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501457

RESUMO

Deficiency of the immune checkpoint lymphocyte activation gene-3 (LAG3) protein is significantly associated with both elevated HDL-cholesterol (HDL-C) and myocardial infarction risk. We determined the association of genetic variants within ±500 kb of LAG3 with plasma LAG3 and defined LAG3-associated plasma proteins with HDL-C and clinical outcomes. Whole genome sequencing and plasma proteomics were obtained from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Framingham Heart Study (FHS) cohorts as part of the Trans-Omics for Precision Medicine program. In situ Hi-C chromatin capture was performed in EBV-transformed cell lines isolated from four MESA participants. Genetic association analyses were performed in MESA using multivariate regression models, with validation in FHS. A LAG3-associated protein network was tested for association with HDL-C, coronary heart disease, and all-cause mortality. We identify an association between the LAG3 rs3782735 variant and plasma LAG3 protein. Proteomics analysis reveals 183 proteins significantly associated with LAG3 with four proteins associated with HDL-C. Four proteins discovered for association with all-cause mortality in FHS shows nominal associations in MESA. Chromatin capture analysis reveals significant cis interactions between LAG3 and C1S, LRIG3, TNFRSF1A, and trans interactions between LAG3 and B2M. A LAG3-associated protein network has significant associations with HDL-C and mortality.


Assuntos
Aterosclerose , Medicina de Precisão , HDL-Colesterol , Cromatina , Humanos , Ativação Linfocitária , Proteínas de Membrana
12.
Circulation ; 145(20): 1524-1533, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35389749

RESUMO

BACKGROUND: Rare sequence variation in genes underlying cardiac repolarization and common polygenic variation influence QT interval duration. However, current clinical genetic testing of individuals with unexplained QT prolongation is restricted to examination of monogenic rare variants. The recent emergence of large-scale biorepositories with sequence data enables examination of the joint contribution of rare and common variations to the QT interval in the population. METHODS: We performed a genome-wide association study of the QTc in 84 630 UK Biobank participants and created a polygenic risk score (PRS). Among 26 976 participants with whole-genome sequencing and ECG data in the TOPMed (Trans-Omics for Precision Medicine) program, we identified 160 carriers of putative pathogenic rare variants in 10 genes known to be associated with the QT interval. We examined QTc associations with the PRS and with rare variants in TOPMed. RESULTS: Fifty-four independent loci were identified by genome-wide association study in the UK Biobank. Twenty-one loci were novel, of which 12 were replicated in TOPMed. The PRS composed of 1 110 494 common variants was significantly associated with the QTc in TOPMed (ΔQTc/decile of PRS=1.4 ms [95% CI, 1.3 to 1.5]; P=1.1×10-196). Carriers of putative pathogenic rare variants had longer QTc than noncarriers (ΔQTc=10.9 ms [95% CI, 7.4 to 14.4]). Of individuals with QTc>480 ms, 23.7% carried either a monogenic rare variant or had a PRS in the top decile (3.4% monogenic, 21% top decile of PRS). CONCLUSIONS: QTc duration in the population is influenced by both rare variants in genes underlying cardiac repolarization and polygenic risk, with a sizeable contribution from polygenic risk. Comprehensive assessment of the genetic determinants of QTc prolongation includes incorporation of both polygenic and monogenic risk.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome do QT Longo , Eletrocardiografia , Heterozigoto , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Herança Multifatorial , Sequenciamento Completo do Genoma
13.
Nutr Metab Cardiovasc Dis ; 32(6): 1418-1426, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35459606

RESUMO

BACKGROUND AND AIMS: The DASH diet conveys protection against type 2 diabetes mellitus (T2D) Via plant-based and non-plant-based recommendations. Research has not identified which glucose homeostasis pathways are improved. We examined associations between adherence to a DASH diet and six glucose homeostasis traits, probing whether associations could be attributed to the plant-based (DASH-P) and/or non-plant based (DASH-NP) components. METHODS AND RESULTS: We included data from 295 adults without T2D (age 59.3 ± 9.00 years; 63.46% non-Hispanic White and 36.54% African American, self-reported race ancestry) participating in the Microbiome and Insulin Longitudinal Evaluation Study (MILES). An oral glucose tolerance test (OGTT) yielded fasting plasma glucose, insulin, C-peptide, and insulin secretion, sensitivity, and disposition index. Habitual dietary intake was assessed by food frequency questionnaire (FFQ). Associations between DASH components and glucose homeostasis traits were examined, controlling for demographics, body mass index (BMI), physical activity, and energy intake. For significant associations, the models were repeated with scores for DASH-P and DASH-NP as predictors in the same model. DASH and DASH-P scores were inversely associated with fasting plasma glucose (DASH:ß = -0.036 ± 0.012,P = 0.005; DASH-P: ß = -0.04 ± 0.017,P = 0.002), and positively associated with insulin sensitivity (DASH:ß = 0.022 ± 0.012,P = 0.042; DASH-P: = 0.036 ± 0.015,P = 0.014). The DASH score was also associated with disposition index (ß = 0.026 ± 0.013,P = 0.038), but this association did not reach significance with DASH-P (ß = 0.035 ± 0.018,P = 0.051). No associations were observed with DASH-NP score (all P > 0.05). CONCLUSIONS: DASH diet is associated with improvement in specific glucose homeostasis traits, likely arising from increased plant-based foods. Such research may help tailor future dietary advice to specific metabolic risk, and to food groups most effective at improving these.


Assuntos
Diabetes Mellitus Tipo 2 , Abordagens Dietéticas para Conter a Hipertensão , Hipertensão , Microbiota , Adulto , Idoso , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta , Abordagens Dietéticas para Conter a Hipertensão/métodos , Homeostase , Humanos , Insulina/metabolismo , Pessoa de Meia-Idade
14.
Cell Metab ; 34(5): 661-666, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35421386

RESUMO

We investigate the extent to which human genetic data are incorporated into studies that hypothesize novel links between genes and metabolic disease. To lower the barriers to using genetic data, we present an approach to enable researchers to evaluate human genetic support for experimentally determined hypotheses.


Assuntos
Doenças Metabólicas , Genética Humana , Humanos , Doenças Metabólicas/genética
15.
Am J Hum Genet ; 109(5): 857-870, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385699

RESUMO

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Pulmão , National Heart, Lung, and Blood Institute (U.S.) , Doença Pulmonar Obstrutiva Crônica/genética , Fatores de Risco , Estados Unidos/epidemiologia
16.
Gastroenterology ; 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35461826

RESUMO

BACKGROUND & AIMS: Mitochondrial dysfunction disrupts the synthesis and secretion of digestive enzymes in pancreatic acinar cells and plays a primary role in the etiology of exocrine pancreas disorders. However, the transcriptional mechanisms that regulate mitochondrial function to support acinar cell physiology are poorly understood. Here, we aim to elucidate the function of estrogen-related receptor γ (ERRγ) in pancreatic acinar cell mitochondrial homeostasis and energy production. METHODS: Two models of ERRγ inhibition, GSK5182-treated wild-type mice and ERRγ conditional knock-out (cKO) mice, were established to investigate ERRγ function in the exocrine pancreas. To identify the functional role of ERRγ in pancreatic acinar cells, we performed histologic and transcriptome analysis with the pancreas isolated from ERRγ cKO mice. To determine the relevance of these findings for human disease, we analyzed transcriptome data from multiple independent human cohorts and conducted genetic association studies for ESRRG variants in 2 distinct human pancreatitis cohorts. RESULTS: Blocking ERRγ function in mice by genetic deletion or inverse agonist treatment results in striking pancreatitis-like phenotypes accompanied by inflammation, fibrosis, and cell death. Mechanistically, loss of ERRγ in primary acini abrogates messenger RNA expression and protein levels of mitochondrial oxidative phosphorylation complex genes, resulting in defective acinar cell energetics. Mitochondrial dysfunction due to ERRγ deletion further triggers autophagy dysfunction, endoplasmic reticulum stress, and production of reactive oxygen species, ultimately leading to cell death. Interestingly, ERRγ-deficient acinar cells that escape cell death acquire ductal cell characteristics, indicating a role for ERRγ in acinar-to-ductal metaplasia. Consistent with our findings in ERRγ cKO mice, ERRγ expression was significantly reduced in patients with chronic pancreatitis compared with normal subjects. Furthermore, candidate locus region genetic association studies revealed multiple single nucleotide variants for ERRγ that are associated with chronic pancreatitis. CONCLUSIONS: Collectively, our findings highlight an essential role for ERRγ in maintaining the transcriptional program that supports acinar cell mitochondrial function and organellar homeostasis and provide a novel molecular link between ERRγ and exocrine pancreas disorders.

17.
Front Cardiovasc Med ; 9: 804788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265679

RESUMO

Background: Rare pathogenic variants in cardiomyopathy (CM) genes can predispose to cardiac remodeling or fibrosis. We studied the carrier status for such variants in adults without clinical cardiovascular disease (CVD) in whom cardiac MRI (CMR)-derived measures of myocardial fibrosis were obtained in the Multi-Ethnic Study of Atherosclerosis (MESA). Objectives: To identify CM-associated pathogenic variants and assess their relative prevalence in participants with extensive myocardial fibrosis by CMR. Methods: MESA whole-genome sequencing data was evaluated to capture variants in CM-associated genes (n = 82). Coding variants with a frequency of <0.1% in gnomAD and 1,000 Genomes Project databases and damaging/deleterious effects based on in-silico scoring tools were assessed by ClinVar database and ACMG curation guidelines for evidence of pathogenicity. Cases were participants with high myocardial fibrosis defined as highest quartile of extracellular volume (ECV) or native T1 time in T1-mapping CMR and controls were the remainder of participants. Results: A total of 1,135 MESA participants had available genetic data and phenotypic measures and were free of clinical CVD at the time of CMR. We identified 6,349 rare variants in CM-associated genes in the overall MESA population, of which six pathogenic/likely pathogenic (P/LP) variants were present in the phenotyped subpopulation. The genes harboring P/LP variants in the case group were MYH7, CRYAB, and SCN5A. The prevalence of P/LP rare variants in cases was higher than controls (5 in 420 [1.1%] vs. 1 in 715 [0.1%], p = 0.03). We identified two MYBPC3 Variants of Unknown Significance (VUS)s with borderline pathogenicity in the case group. The left ventricle (LV) volume, mass, ejection fraction (EF), and longitudinal and circumferential strain in participants with the variants were not different compared to the overall cohort. Conclusions: We observed a higher prevalence of rare potentially pathogenic CM associated genetic variants in participants with significant myocardial fibrosis quantified in CMR as compared to controls without significant fibrosis. No cardiac structural or functional differences were found between participants with or without P/LP variants.

18.
Nat Genet ; 54(3): 263-273, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35256806

RESUMO

Analyses of data from genome-wide association studies on unrelated individuals have shown that, for human traits and diseases, approximately one-third to two-thirds of heritability is captured by common SNPs. However, it is not known whether the remaining heritability is due to the imperfect tagging of causal variants by common SNPs, in particular whether the causal variants are rare, or whether it is overestimated due to bias in inference from pedigree data. Here we estimated heritability for height and body mass index (BMI) from whole-genome sequence data on 25,465 unrelated individuals of European ancestry. The estimated heritability was 0.68 (standard error 0.10) for height and 0.30 (standard error 0.10) for body mass index. Low minor allele frequency variants in low linkage disequilibrium (LD) with neighboring variants were enriched for heritability, to a greater extent for protein-altering variants, consistent with negative selection. Our results imply that rare variants, in particular those in regions of low linkage disequilibrium, are a major source of the still missing heritability of complex traits and disease.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Alelos , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética
19.
Hum Mol Genet ; 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234888

RESUMO

Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of Abdominal Aortic Aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in ten cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects (PBIO) as replication. Maximum anterior-posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In GWAS on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = -0.02, SE = 0.004, p-value = 2.10 × 10-8). The association replicated in the PBIO1 cohort (p-value = 8.19 × 10-4). In exome-array single-variant analysis (p-value threshold = 9 × 10-7), the lowest p-value was found for rs239259 located in SLC22A20 (beta = 0.007, p-value =1.2 × 10-5). In the gene-based analysis (p-value threshold = 1.85 × 10-6), PCSK5 showed an association with AAD (p-value = 8.03 × 10-7). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = -0.003, p-value = 0.02), triglycerides (beta = -0.16, p-value = 0.008) and height (beta = 0.03, p-value<0.0001), known risk factors for AAA, consistent with a causal association with AAD. Our findings point to new biology as well as highlighting gene regions in mechanisms that have previously been implicated in the genetics of other vascular diseases.

20.
PLoS One ; 17(2): e0264341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35202437

RESUMO

Genetically regulated gene expression has helped elucidate the biological mechanisms underlying complex traits. Improved high-throughput technology allows similar interrogation of the genetically regulated proteome for understanding complex trait mechanisms. Here, we used the Trans-omics for Precision Medicine (TOPMed) Multi-omics pilot study, which comprises data from Multi-Ethnic Study of Atherosclerosis (MESA), to optimize genetic predictors of the plasma proteome for genetically regulated proteome-wide association studies (PWAS) in diverse populations. We built predictive models for protein abundances using data collected in TOPMed MESA, for which we have measured 1,305 proteins by a SOMAscan assay. We compared predictive models built via elastic net regression to models integrating posterior inclusion probabilities estimated by fine-mapping SNPs prior to elastic net. In order to investigate the transferability of predictive models across ancestries, we built protein prediction models in all four of the TOPMed MESA populations, African American (n = 183), Chinese (n = 71), European (n = 416), and Hispanic/Latino (n = 301), as well as in all populations combined. As expected, fine-mapping produced more significant protein prediction models, especially in African ancestries populations, potentially increasing opportunity for discovery. When we tested our TOPMed MESA models in the independent European INTERVAL study, fine-mapping improved cross-ancestries prediction for some proteins. Using GWAS summary statistics from the Population Architecture using Genomics and Epidemiology (PAGE) study, which comprises ∼50,000 Hispanic/Latinos, African Americans, Asians, Native Hawaiians, and Native Americans, we applied S-PrediXcan to perform PWAS for 28 complex traits. The most protein-trait associations were discovered, colocalized, and replicated in large independent GWAS using proteome prediction model training populations with similar ancestries to PAGE. At current training population sample sizes, performance between baseline and fine-mapped protein prediction models in PWAS was similar, highlighting the utility of elastic net. Our predictive models in diverse populations are publicly available for use in proteome mapping methods at https://doi.org/10.5281/zenodo.4837327.


Assuntos
Aterosclerose/genética , Estudos de Associação Genética , Modelos Genéticos , Proteínas/genética , Proteoma/genética , Aterosclerose/etnologia , Feminino , Frequência do Gene , Humanos , Masculino , Projetos Piloto , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...