Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genomics ; 113(6): 3935-3950, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606916

RESUMO

Iron (Fe) and phosphorus (P) are the essential mineral nutrients for plant growth and development. However, the molecular interaction of the Fe and P pathways in crops remained largely obscure. In this study, we provide a comprehensive physiological and molecular analysis of hexaploid wheat response to single (Fe, P) and its combinatorial deficiencies. Our data showed that inhibition of the primary root growth occurs in response to Fe deficiency; however, growth was rescued when combinatorial deficiencies occurred. Analysis of RNAseq revealed that distinct molecular rearrangements during combined deficiencies with predominance for genes related to metabolic pathways and secondary metabolite biosynthesis primarily include genes for UDP-glycosyltransferase, cytochrome-P450s, and glutathione metabolism. Interestingly, the Fe-responsive cis-regulatory elements in the roots in Fe stress conditions were enriched compared to the combined stress. Our metabolome data also revealed the accumulation of distinct metabolites such as amino-isobutyric acid, arabinonic acid, and aconitic acid in the combined stress environment. Overall, these results are essential in developing new strategies to improve the resilience of crops in limited nutrients.

2.
J Exp Bot ; 72(10): 3881-3901, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33758916

RESUMO

Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Crit Rev Biotechnol ; 41(1): 63-71, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33028118

RESUMO

Phosphorus (P) is an essential macronutrient for all living organisms. Importantly, plants require a large amount of P to grow, and P deficiency causes huge losses in plant production. Although this issue can be mitigated by the appropriate use of phosphate (Pi) rock-derived P fertilizers, phosphate rock is a finite natural resource. Moreover, the increased demand for food as a result of our growing global population is another factor contributing to a prospective P crisis. While creating crops that are resilient to Pi deficiency presents great scientific challenge, the current progress in our understanding of how plants regulate Pi homeostasis offers some opportunities for further study. In this review, we present the published research supporting these opportunities, which are based on the molecular mechanisms that plants have evolved to respond to P deficiency. First, we focus on recent advances in P sensing and signaling pathways in the regulation of root system architecture. Next, we describe the mechanisms that regulate Pi transport and accumulation, in a Pi- (or other nutrient) dependent manner. Integrating these data will help to design an innovative strategy for improving Pi nutrition in plants. In addition, this will help with Pi scarcity, one of the challenges facing agriculture in the twenty first century.


Assuntos
Agricultura , Fertilizantes , Fosfatos , Agricultura/tendências , Produtos Agrícolas/fisiologia , Fosfatos/metabolismo , Fósforo
4.
J Exp Bot ; 72(6): 2136-2153, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33175167

RESUMO

In plants, iron (Fe) transport and homeostasis are highly regulated processes. Fe deficiency or excess dramatically limits plant and algal productivity. Interestingly, complex and unexpected interconnections between Fe and various macro- and micronutrient homeostatic networks, supposedly maintaining general ionic equilibrium and balanced nutrition, are currently being uncovered. Although these interactions have profound consequences for our understanding of Fe homeostasis and its regulation, their molecular bases and biological significance remain poorly understood. Here, we review recent knowledge gained on how Fe interacts with micronutrient (e.g. zinc, manganese) and macronutrient (e.g. sulfur, phosphate) homeostasis, and on how these interactions affect Fe uptake and trafficking. Finally, we highlight the importance of developing an improved model of how Fe signaling pathways are integrated into functional networks to control plant growth and development in response to fluctuating environments.


Assuntos
Regulação da Expressão Gênica de Plantas , Ferro , Homeostase , Ferro/metabolismo , Minerais/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo
5.
Trends Plant Sci ; 26(3): 248-259, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33246890

RESUMO

Although abundant in soils, iron (Fe) is poorly bioavailable for plants. Improving Fe uptake in crops, enabling them to grow in Fe-depleted soils, has become a major focal interest. The secretion of Fe-mobilizing coumarins by plant roots recently emerged as an important factor allowing nongrass species to cope with low Fe bioavailability. The main molecular actors involved in the biosynthesis and secretion of coumarins have been identified, but the precise regulatory mechanisms that tune their production remain poorly understood. Here, we review the recent progress in coumarin synthesis and transport in plants and future research directions to gain knowledge of these mechanisms, which will offer novel opportunities for improving plant growth and health and for generating Fe-fortified crops.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Cumarínicos , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Raízes de Plantas/metabolismo , Solo
6.
Front Plant Sci ; 11: 1065, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793256

RESUMO

Silicon (Si) is not an essential element, but it is a beneficial element for growth and development of many plant species. Nevertheless, how plants regulate the initial uptake of silicon (Si) remains poorly understood. It has been proposed that the regulation of Si uptake is largely regulated by Si availability. However, the current model is clearly reductionist and does not consider the availability of essential micro-elements such as iron (Fe). Therefore, the present study investigates the regulation of the Si transporter Lsi1, in three rice varieties grown under different Si and Fe regimes. The Lsi1 transcript was compared to intracellular concentrations of Si and Fe in roots. The amount of Lsi1 transcript was mainly altered in response to Si-related treatments. Split-root experiments showed that the expression of Lsi1 is locally and systemically regulated in response to Si signals. Interestingly, the accumulation of Lsi1 transcripts appeared to be dependent on Fe availability in root growth environment. Results suggest that the expression of Lsi1 depends on a regulatory network that integrates Si and Fe signals. This response was conserved in the three rice cultivars tested. This finding is the first step toward a better understanding of the co-regulation of Si homeostasis with other essential nutrients in plants. Finally, our data clearly show that a better understanding of Si/Fe signaling is needed to define the fundamental principles supporting plant health and nutrition.

7.
PLoS Genet ; 15(11): e1008392, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31693663

RESUMO

The molecular mechanisms by which plants modulate their root growth rate (RGR) in response to nutrient deficiency are largely unknown. Using Arabidopsis thaliana accessions, we analyzed RGR variation under combinatorial mineral nutrient deficiencies involving phosphorus (P), iron (Fe), and zinc (Zn). While -P stimulated early RGR of most accessions, -Fe or -Zn reduced it. The combination of either -P-Fe or -P-Zn led to suppression of the growth inhibition exerted by -Fe or -Zn alone. Surprisingly, root growth responses of the reference accession Columbia (Col-0) were not representative of the species under -P nor -Zn. Using a systems approach that combines GWAS, network-based candidate identification, and reverse genetic screen, we identified new genes that regulate root growth in -P-Fe: VIM1, FH6, and VDAC3. Our findings provide a framework to systematically identifying favorable allelic variations to improve root growth, and to better understand how plants sense and respond to multiple environmental cues.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Ferro/metabolismo , Raízes de Plantas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Ferro/deficiência , Minerais/metabolismo , Nutrientes/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Biologia de Sistemas , Zinco/metabolismo
8.
J Exp Bot ; 70(21): 6141-6161, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31738431

RESUMO

Iron (Fe) is an essential micronutrient for all organisms. In crop plants, Fe deficiency can decrease crop yield significantly; however, our current understanding of how major crops respond to Fe deficiency remains limited. Herein, the effect of Fe deprivation at both the transcriptomic and metabolic level in hexaploid wheat was investigated. Genome-wide gene expression reprogramming was observed in wheat roots subjected to Fe starvation, with a total of 5854 genes differentially expressed. Homoeologue and subgenome-specific analysis unveiled the induction-biased contribution from the A and B genomes. In general, the predominance of genes coding for nicotianamine synthase, yellow stripe-like transporters, metal transporters, ABC transporters, and zinc-induced facilitator-like protein was noted. Expression of genes related to the Strategy II mode of Fe uptake was also predominant. Our transcriptomic data were in agreement with the GC-MS analysis that showed the enhanced accumulation of various metabolites such as fumarate, malonate, succinate, and xylofuranose, which could be contributing to Fe mobilization. Interestingly, Fe starvation leads to a significant temporal increase of glutathione S-transferase at both the transcriptional level and enzymatic activity level, which indicates the involvement of glutathione in response to Fe stress in wheat roots. Taken together, our result provides new insight into the wheat response to Fe starvation at the molecular level and lays the foundation to design new strategies for the improvement of Fe nutrition in crops.


Assuntos
Ferro/deficiência , Raízes de Plantas/genética , Poliploidia , Triticum/genética , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Metaboloma , RNA-Seq , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Transcrição Genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Regulação para Cima/genética
9.
Trends Plant Sci ; 24(6): 542-552, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006547

RESUMO

In nature, plants have to handle daily fluctuations in light and temperature. In addition, plants face biotic and abiotic stresses that often come in various combinations. For instance, the availability of various nutrients in soil is heterogeneous, resulting in combined nutrient stress. Recent studies reveal that plant responses to multiple nutrient stresses are not the summation of the plant responses to each individual stress. Here, we present and discuss the interactions between phosphate, nitrogen, and zinc to illustrate the effect of macro- and micronutrient interactions on plant growth and ion homeostasis. Solving the mystery of these interactions will pave the way to the development of strategies to improve crop productivity.


Assuntos
Plantas , Estresse Fisiológico , Minerais , Nutrientes , Desenvolvimento Vegetal
10.
Plant Cell ; 31(5): 1171-1184, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872321

RESUMO

Nitrogen (N) and phosphorus (P) are key macronutrients sustaining plant growth and crop yield and ensuring food security worldwide. Understanding how plants perceive and interpret the combinatorial nature of these signals thus has important agricultural implications within the context of (1) increased food demand, (2) limited P supply, and (3) environmental pollution due to N fertilizer usage. Here, we report the discovery of an active control of P starvation response (PSR) by a combination of local and long-distance N signaling pathways in plants. We show that, in Arabidopsis (Arabidopsis thaliana), the nitrate transceptor CHLORINA1/NITRATE TRANSPORTER1.1 (CHL1/NRT1.1) is a component of this signaling crosstalk. We also demonstrate that this crosstalk is dependent on the control of the accumulation and turnover by N of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), a master regulator of P sensing and signaling. We further show an important role of PHOSPHATE2 (PHO2) as an integrator of the N availability into the PSR since the effect of N on PSR is strongly affected in pho2 mutants. We finally show that PHO2 and NRT1.1 influence each other's transcript levels. These observations are summarized in a model representing a framework with several entry points where N signal influence PSR. Finally, we demonstrate that this phenomenon is conserved in rice (Oryza sativa) and wheat (Triticum aestivum), opening biotechnological perspectives in crop plants.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Oryza/genética , Fosfatos/deficiência , Proteínas de Plantas/metabolismo , Transdução de Sinais , Triticum/genética , Proteínas de Transporte de Ânions/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Nitrogênio/metabolismo , Oryza/fisiologia , Fósforo/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/fisiologia
11.
Nat Plants ; 4(12): 983-984, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518834

Assuntos
Fósforo , Fitocromo B , Luz
12.
PLoS Genet ; 14(4): e1007304, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608565

RESUMO

Zinc is an essential micronutrient for all living organisms and is involved in a plethora of processes including growth and development, and immunity. However, it is unknown if there is a common genetic and molecular basis underlying multiple facets of zinc function. Here we used natural variation in Arabidopsis thaliana to study the role of zinc in regulating growth. We identify allelic variation of the systemic immunity gene AZI1 as a key for determining root growth responses to low zinc conditions. We further demonstrate that this gene is important for modulating primary root length depending on the zinc and defence status. Finally, we show that the interaction of the immunity signal azelaic acid and zinc level to regulate root growth is conserved in rice. This work demonstrates that there is a common genetic and molecular basis for multiple zinc dependent processes and that nutrient cues can determine the balance of growth and immune responses in plants.


Assuntos
Alelos , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Variação Genética , Raízes de Plantas/crescimento & desenvolvimento , Zinco/deficiência , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ácidos Dicarboxílicos/metabolismo , Oryza/genética , Oryza/metabolismo , Transdução de Sinais
13.
Int J Mol Sci ; 19(3)2018 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-29562647

RESUMO

Mineral nutrient homeostasis is essential for plant growth and development. Recent research has demonstrated that the occurrence of interactions among the mechanisms regulating the homeostasis of different nutrients in plants is a general rule rather than an exception. Therefore, it is important to understand how plants regulate the homeostasis of these elements and how multiple mineral nutrient signals are wired to influence plant growth. Silicon (Si) is not directly involved in plant metabolism but it is an essential element for a high and sustainable production of crops, especially rice, because of its high content in the total shoot dry weight. Although some mechanisms underlying the role of Si in plants responses to both abiotic and biotic stresses have been proposed, the involvement of Si in regulating plant growth in conditions where the availability of essential macro- and micronutrients changes remains poorly investigated. In this study, the existence of an interaction between Si, phosphate (Pi), and iron (Fe) availability was examined in lowland (Suphanburi 1, SPR1) and upland (Kum Hom Chiang Mai University, KH CMU) rice varieties. The effect of Si and/or Fe deficiency on plant growth, Pi accumulation, Pi transporter expression (OsPHO1;2), and Pi root-to-shoot translocation in these two rice varieties grown under individual or combinatorial nutrient stress conditions were determined. The phenotypic, physiological, and molecular data of this study revealed an interesting tripartite Pi-Fe-Si homeostasis interaction that influences plant growth in contrasting manners in the two rice varieties. These results not only reveal the involvement of Si in modulating rice growth through an interaction with essential micro- and macronutrients, but, more importantly, they opens new research avenues to uncover the molecular basis of Pi-Fe-Si signaling crosstalk in plants.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Ferro/deficiência , Oryza/crescimento & desenvolvimento , Fosfatos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Silício/metabolismo , Variação Biológica da População , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Ferro/química , Oryza/genética , Fosfatos/química , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Silício/química
14.
Elife ; 72018 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-29453864

RESUMO

All living organisms require a variety of essential elements for their basic biological functions. While the homeostasis of nutrients is highly intertwined, the molecular and genetic mechanisms of these dependencies remain poorly understood. Here, we report a discovery of a molecular pathway that controls phosphate (Pi) accumulation in plants under Zn deficiency. Using genome-wide association studies, we first identified allelic variation of the Lyso-PhosphatidylCholine (PC) AcylTransferase 1 (LPCAT1) gene as the key determinant of shoot Pi accumulation under Zn deficiency. We then show that regulatory variation at the LPCAT1 locus contributes significantly to this natural variation and we further demonstrate that the regulation of LPCAT1 expression involves bZIP23 TF, for which we identified a new binding site sequence. Finally, we show that in Zn deficient conditions loss of function of LPCAT1 increases the phospholipid Lyso-PhosphatidylCholine/PhosphatidylCholine ratio, the expression of the Pi transporter PHT1;1, and that this leads to shoot Pi accumulation.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Homeostase , Fosfatos/metabolismo , Oligoelementos/metabolismo , Zinco/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Brotos de Planta/enzimologia , Brotos de Planta/metabolismo , Ligação Proteica
15.
Sci Rep ; 8(1): 1137, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348608

RESUMO

Engineering osmotolerant plants is a challenge for modern agriculture. An interaction between osmotic stress response and phosphate homeostasis has been reported in plants, but the identity of molecules involved in this interaction remains unknown. In this study we assessed the role of phytic acid (PA) in response to osmotic stress and/or phosphate deficiency in Arabidopsis thaliana. For this purpose, we used Arabidopsis lines (L7 and L9) expressing a bacterial beta-propeller phytase PHY-US417, and a mutant in inositol polyphosphate kinase 1 gene (ipk1-1), which were characterized by low PA content, 40% (L7 and L9) and 83% (ipk1-1) of the wild-type (WT) plants level. We show that the PHY-overexpressor lines have higher osmotolerance and lower sensitivity to abscisic acid than ipk1-1 and WT. Furthermore, PHY-overexpressors showed an increase by more than 50% in foliar ascorbic acid levels and antioxidant enzyme activities compared to ipk1-1 and WT plants. Finally, PHY-overexpressors are more tolerant to combined mannitol stresses and phosphate deficiency than WT plants. Overall, our results demonstrate that the modulation of PA improves plant growth under osmotic stress, likely via stimulation of enzymatic and non-enzymatic antioxidant systems, and that beside its regulatory role in phosphate homeostasis, PA may be also involved in fine tuning osmotic stress response in plants.


Assuntos
6-Fitase/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Fosfatos/deficiência , Desenvolvimento Vegetal , Ácido Abscísico/metabolismo , Adaptação Biológica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo
16.
Plant Physiol ; 175(2): 916-926, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28827455

RESUMO

Identifying transcription factor (TFs) cooperation controlling target gene expression is still an arduous challenge. The accuracy of current methods at genome scale significantly drops with the increase in number of genes, which limits their applicability to more complex genomes, like animals and plants. Here, we developed an algorithm, TransDetect, able to predict TF combinations controlling the expression level of a given gene. TransDetect was used to identify novel TF modules regulating the expression of Arabidopsis (Arabidopsis thaliana) phosphate transporter PHO1;H3 comprising MYB15, MYB84, bHLH35, and ICE1. These TFs were confirmed to interact between themselves and with the PHO1;H3 promoter. Phenotypic and genetic analyses of TF mutants enable the organization of these four TFs and PHO1;H3 in a new gene regulatory network controlling phosphate accumulation in zinc-dependent manner. This demonstrates the potential of TransDetect to extract directionality in nondynamic transcriptomes and to provide a blueprint to identify gene regulatory network involved in a given biological process.


Assuntos
Algoritmos , Arabidopsis/genética , Redes Reguladoras de Genes , Fosfatos/metabolismo , Zinco/deficiência , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Fatores de Transcrição/genética
17.
Curr Opin Plant Biol ; 39: 1-7, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28441589

RESUMO

The ability of plants to appropriately respond to the soil nutrient availability is of primary importance for their development and to complete their life cycle. Deciphering these multifaceted adaptive mechanisms remains a major challenge for scientists to date. Recent technological breakthroughs now enable to assess the dynamism and complexity of these processes at unprecedented resolution. In this review, we present some of the most recent findings on the involvement of histone modifications, histone variants and DNA methylation in response to nutrient stresses as well as discussing the potential roles these chromatin changes could serve as priming or as trans-generational stress memory mechanisms.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , Histonas/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Código das Histonas
18.
Int J Mol Sci ; 18(3)2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28287426

RESUMO

Rice is the main staple crop for one-third of the world population. To maximize yields, large quantities and constant input of fertilizers containing essential nutrients such as phosphorus (P) and iron (Fe) are added. Rice can germinate in both aerobic and anaerobic conditions, but the crosstalk between oxygen (O2) and nutrients such as P and Fe on plant growth remains obscure. The aim of this work was to test whether such interactions exist, and, if so, if they are conserved between up- and lowland rice varieties. To do so, we assessed shoot and root biomass as well as inorganic phosphate (Pi) accumulation in four rice varieties, including two lowland rice varieties Nipponbare and Suphanburi 1 (SPR1) (adapted to non-aerated condition) and two upland rice varieties CMU122 and Sew Mae Jun (SMJ) (adapted to aerated condition) under various conditions of Pi and/or Fe deficiencies, in aerated and non-areated solution. Under these different experimental conditions, our results revealed that the altered shoot biomass in Nipponbare and SPR1 was O2-dependent but to a lesser extent in CMU122 and SMJ cultivars. In this perspective, discovering the biological significance and molecular basis of these mineral elements and O2 signal interaction is needed to fully appreciate the performance of plants to multiple environmental changes.


Assuntos
Ferro/deficiência , Oryza/metabolismo , Oxigênio/metabolismo , Fósforo/deficiência , Ecossistema , Variação Genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais
19.
Crit Rev Biotechnol ; 37(7): 898-910, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28076998

RESUMO

Phosphorus (P) is an essential macronutrient for all living organisms. In plants, P is taken up from the rhizosphere by the roots mainly as inorganic phosphate (Pi), which is required in large and sufficient quantities to maximize crop yields. In today's agricultural society, crop yield is mostly ensured by the excessive use of Pi fertilizers, a costly practice neither eco-friendly or sustainable. Therefore, generating plants with improved P use efficiency (PUE) is of major interest. Among the various strategies employed to date, attempts to engineer genetically modified crops with improved capacity to utilize phytate (PA), the largest soil P form and unfortunately not taken up by plants, remains a key challenge. To meet these challenges, we need a better understanding of the mechanisms regulating Pi sensing, signaling, transport and storage in plants. In this review, we summarize the current knowledge on these aspects, which are mainly gained from investigations conducted in Arabidopsis thaliana, and we extended it to those available on an economically important crop, wheat. Strategies to enhance the PA use, through the use of bacterial or fungal phytases and other attempts of reducing seed PA levels, are also discussed. We critically review these data in terms of their potential for use as a technology for genetic manipulation of PUE in wheat, which would be both economically and environmentally beneficial.


Assuntos
Arabidopsis/metabolismo , 6-Fitase , Fosfatos , Ácido Fítico , Triticum
20.
Plant J ; 90(5): 868-885, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27859875

RESUMO

Phosphorus (P) is one of the essential nutrients for plants, and is indispensable for plant growth and development. P deficiency severely limits crop yield, and regular fertilizer applications are required to obtain high yields and to prevent soil degradation. To access P from the soil, plants have evolved high- and low-affinity Pi transporters and the ability to induce root architectural changes to forage P. Also, adjustments of numerous cellular processes are triggered by the P starvation response, a tightly regulated process in plants. With the increasing demand for food as a result of a growing population, the demand for P fertilizer is steadily increasing. Given the high costs of fertilizers and in light of the fact that phosphate rock, the source of P fertilizer, is a finite natural resource, there is a need to enhance P fertilizer use efficiency in agricultural systems and to develop plants with enhanced Pi uptake and internal P-use efficiency (PUE). In this review we will provide an overview of continuing relevant research and highlight different approaches towards developing crops with enhanced PUE. In this context, we will summarize our current understanding of root responses to low phosphorus conditions and will emphasize the importance of combining PUE with tolerance of other stresses, such as aluminum toxicity. Of the many genes associated with Pi deficiency, this review will focus on those that hold promise or are already at an advanced stage of testing (OsPSTOL1, AVP1, PHO1 and OsPHT1;6). Finally, an update is provided on the progress made exploring alternative technologies, such as phosphite fertilizer.


Assuntos
Produtos Agrícolas/metabolismo , Fósforo/metabolismo , Alumínio/toxicidade , Produtos Agrícolas/efeitos dos fármacos , Fosfitos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...