Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 105(3): 534-548, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422819

RESUMO

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.

2.
Am J Hum Genet ; 105(3): 625-630, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31303264

RESUMO

Rothmund-Thomson syndrome (RTS) is an autosomal-recessive disorder characterized by poikiloderma, sparse hair, short stature, and skeletal anomalies. Type 2 RTS, which is defined by the presence of bi-allelic mutations in RECQL4, is characterized by increased cancer susceptibility and skeletal anomalies, whereas the genetic basis of RTS type 1, which is associated with juvenile cataracts, is unknown. We studied ten individuals, from seven families, who had RTS type 1 and identified a deep intronic splicing mutation of the ANAPC1 gene, a component of the anaphase-promoting complex/cyclosome (APC/C), in all affected individuals, either in the homozygous state or in trans with another mutation. Fibroblast studies showed that the intronic mutation causes the activation of a 95 bp pseudoexon, leading to mRNAs with premature termination codons and nonsense-mediated decay, decreased ANAPC1 protein levels, and prolongation of interphase. Interestingly, mice that were heterozygous for a knockout mutation have an increased incidence of cataracts. Our results demonstrate that deficiency in the APC/C is a cause of RTS type 1 and suggest a possible link between the APC/C and RECQL4 helicase because both proteins are involved in DNA repair and replication.

3.
Am J Hum Genet ; 105(2): 384-394, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31256876

RESUMO

Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.

5.
Am J Hum Genet ; 104(5): 815-834, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031012

RESUMO

We identified individuals with variations in ACTL6B, a component of the chromatin remodeling machinery including the BAF complex. Ten individuals harbored bi-allelic mutations and presented with global developmental delay, epileptic encephalopathy, and spasticity, and ten individuals with de novo heterozygous mutations displayed intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypies, and minor facial dysmorphisms (wide mouth, diastema, bulbous nose). Nine of these ten unrelated individuals had the identical de novo c.1027G>A (p.Gly343Arg) mutation. Human-derived neurons were generated that recaptured ACTL6B expression patterns in development from progenitor cell to post-mitotic neuron, validating the use of this model. Engineered knock-out of ACTL6B in wild-type human neurons resulted in profound deficits in dendrite development, a result recapitulated in two individuals with different bi-allelic mutations, and reversed on clonal genetic repair or exogenous expression of ACTL6B. Whole-transcriptome analyses and whole-genomic profiling of the BAF complex in wild-type and bi-allelic mutant ACTL6B neural progenitor cells and neurons revealed increased genomic binding of the BAF complex in ACTL6B mutants, with corresponding transcriptional changes in several genes including TPPP and FSCN1, suggesting that altered regulation of some cytoskeletal genes contribute to altered dendrite development. Assessment of bi-alleic and heterozygous ACTL6B mutations on an ACTL6B knock-out human background demonstrated that bi-allelic mutations mimic engineered deletion deficits while heterozygous mutations do not, suggesting that the former are loss of function and the latter are gain of function. These results reveal a role for ACTL6B in neurodevelopment and implicate another component of chromatin remodeling machinery in brain disease.

6.
Am J Hum Genet ; 104(3): 530-541, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827496

RESUMO

Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.

7.
Am J Hum Genet ; 104(4): 596-610, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879640

RESUMO

Mutations in several genes encoding components of the SWI/SNF chromatin remodeling complex cause neurodevelopmental disorders (NDDs). Here, we report on five individuals with mutations in SMARCD1; the individuals present with developmental delay, intellectual disability, hypotonia, feeding difficulties, and small hands and feet. Trio exome sequencing proved the mutations to be de novo in four of the five individuals. Mutations in other SWI/SNF components cause Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, or other syndromic and non-syndromic NDDs. Although the individuals presented here have dysmorphisms and some clinical overlap with these syndromes, they lack their typical facial dysmorphisms. To gain insight into the function of SMARCD1 in neurons, we investigated the Drosophila ortholog Bap60 in postmitotic memory-forming neurons of the adult Drosophila mushroom body (MB). Targeted knockdown of Bap60 in the MB of adult flies causes defects in long-term memory. Mushroom-body-specific transcriptome analysis revealed that Bap60 is required for context-dependent expression of genes involved in neuron function and development in juvenile flies when synaptic connections are actively being formed in response to experience. Taken together, we identify an NDD caused by SMARCD1 mutations and establish a role for the SMARCD1 ortholog Bap60 in the regulation of neurodevelopmental genes during a critical time window of juvenile adult brain development when neuronal circuits that are required for learning and memory are formed.

9.
Mol Cell Biol ; 39(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642949

RESUMO

The physiological functions of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain poorly characterized. Previous analysis of mice with a targeted insertion of the lacZ reporter in the Mapk6 locus (Mapk6lacZ ) showed that inactivation of ERK3 in Mapk6lacZ mice leads to perinatal lethality associated with intrauterine growth restriction, defective lung maturation, and neuromuscular anomalies. To further explore the role of ERK3 in physiology and disease, we generated novel mouse models expressing a catalytically inactive (Mapk6KD ) or conditional (Mapk6Δ ) allele of ERK3. Surprisingly, we found that mice devoid of ERK3 kinase activity or expression survive the perinatal period without any observable lung or neuromuscular phenotype. ERK3 mutant mice reached adulthood, were fertile, and showed no apparent health problem. However, analysis of growth curves revealed that ERK3 kinase activity is necessary for optimal postnatal growth. To gain insight into the genetic basis underlying the discrepancy in phenotypes of different Mapk6 mutant mouse models, we analyzed the regulation of genes flanking the Mapk6 locus by quantitative PCR. We found that the expression of several Mapk6 neighboring genes is deregulated in Mapk6lacZ mice but not in Mapk6KD or Mapk6Δ mutant mice. Our genetic analysis suggests that off-target effects of the targeting construct on local gene expression are responsible for the perinatal lethality phenotype of Mapk6lacZ mutant mice.

10.
Am J Hum Genet ; 104(1): 164-178, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30580808

RESUMO

SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.


Assuntos
Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Mutação , Fatores de Transcrição/genética , Anormalidades Múltiplas/genética , Adolescente , Criança , Pré-Escolar , Face/anormalidades , Feminino , Deformidades Congênitas da Mão/genética , Humanos , Masculino , Micrognatismo/genética , Pescoço/anormalidades , Síndrome
11.
Nat Commun ; 9(1): 4619, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397230

RESUMO

Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.

12.
Am J Hum Genet ; 103(4): 602-611, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30269814

RESUMO

Inherited GPI deficiencies (IGDs) are a subset of congenital disorders of glycosylation that are increasingly recognized as a result of advances in whole-exome sequencing (WES) and whole-genome sequencing (WGS). IGDs cause a series of overlapping phenotypes consisting of seizures, dysmorphic features, multiple congenital malformations, and severe intellectual disability. We present a study of six individuals from three unrelated families in which WES or WGS identified bi-allelic phosphatidylinositol glycan class S (PIGS) biosynthesis mutations. Phenotypes included severe global developmental delay, seizures (partly responding to pyridoxine), hypotonia, weakness, ataxia, and dysmorphic facial features. Two of them had compound-heterozygous variants c.108G>A (p.Trp36∗) and c.101T>C (p.Leu34Pro), and two siblings of another family were homozygous for a deletion and insertion leading to p.Thr439_Lys451delinsArgLeuLeu. The third family had two fetuses with multiple joint contractures consistent with fetal akinesia. They were compound heterozygous for c.923A>G (p.Glu308Gly) and c.468+1G>C, a splicing mutation. Flow-cytometry analyses demonstrated that the individuals with PIGS mutations show a GPI-AP deficiency profile. Expression of the p.Trp36∗ variant in PIGS-deficient HEK293 cells revealed only partial restoration of cell-surface GPI-APs. In terms of both biochemistry and phenotype, loss of function of PIGS shares features with PIGT deficiency and other IGDs. This study contributes to the understanding of the GPI-AP biosynthesis pathway by describing the consequences of PIGS disruption in humans and extending the family of IGDs.

13.
Am J Hum Genet ; 101(5): 815-823, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100092

RESUMO

Fibronectin is a master organizer of extracellular matrices (ECMs) and promotes the assembly of collagens, fibrillin-1, and other proteins. It is also known to play roles in skeletal tissues through its secretion by osteoblasts, chondrocytes, and mesenchymal cells. Spondylometaphyseal dysplasias (SMDs) comprise a diverse group of skeletal dysplasias and often manifest as short stature, growth-plate irregularities, and vertebral anomalies, such as scoliosis. By comparing the exomes of individuals with SMD with the radiographic appearance of "corner fractures" at metaphyses, we identified three individuals with fibronectin (FN1) variants affecting highly conserved residues. Furthermore, using matching tools and the SkelDys emailing list, we identified other individuals with de novo FN1 variants and a similar phenotype. The severe scoliosis in most individuals and rare developmental coxa vara distinguish individuals with FN1 mutations from those with classical Sutcliffe-type SMD. To study functional consequences of these FN1 mutations on the protein level, we introduced three disease-associated missense variants (p.Cys87Phe [c.260G>T], p.Tyr240Asp [c.718T>G], and p.Cys260Gly [c.778T>G]) into a recombinant secreted N-terminal 70 kDa fragment (rF70K) and the full-length fibronectin (rFN). The wild-type rF70K and rFN were secreted into the culture medium, whereas all mutant proteins were either not secreted or secreted at significantly lower amounts. Immunofluorescence analysis demonstrated increased intracellular retention of the mutant proteins. In summary, FN1 mutations that cause defective fibronectin secretion are found in SMD, and we thus provide additional evidence for a critical function of fibronectin in cartilage and bone.


Assuntos
Fibronectinas/genética , Fraturas Ósseas/genética , Mutação/genética , Osteocondrodisplasias/genética , Adolescente , Adulto , Doenças do Desenvolvimento Ósseo/genética , Osso e Ossos/patologia , Cartilagem/patologia , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Masculino , Fenótipo , Escoliose/genética
14.
Am J Hum Genet ; 101(5): 856-865, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100095

RESUMO

Approximately one in every 200 mammalian proteins is anchored to the cell membrane through a glycosylphosphatidylinositol (GPI) anchor. These proteins play important roles notably in neurological development and function. To date, more than 20 genes have been implicated in the biogenesis of GPI-anchored proteins. GPAA1 (glycosylphosphatidylinositol anchor attachment 1) is an essential component of the transamidase complex along with PIGK, PIGS, PIGT, and PIGU (phosphatidylinositol-glycan biosynthesis classes K, S, T, and U, respectively). This complex orchestrates the attachment of the GPI anchor to the C terminus of precursor proteins in the endoplasmic reticulum. Here, we report bi-allelic mutations in GPAA1 in ten individuals from five families. Using whole-exome sequencing, we identified two frameshift mutations (c.981_993del [p.Gln327Hisfs∗102] and c.920delG [p.Gly307Alafs∗11]), one intronic splicing mutation (c.1164+5C>T), and six missense mutations (c.152C>T [p.Ser51Leu], c.160_161delinsAA [p.Ala54Asn], c.527G>C [p.Trp176Ser], c.869T>C [p.Leu290Pro], c.872T>C [p.Leu291Pro], and c.1165G>C [p.Ala389Pro]). Most individuals presented with global developmental delay, hypotonia, early-onset seizures, cerebellar atrophy, and osteopenia. The splicing mutation was found to decrease GPAA1 mRNA. Moreover, flow-cytometry analysis of five available individual samples showed that several GPI-anchored proteins had decreased cell-surface abundance in leukocytes (FLAER, CD16, and CD59) or fibroblasts (CD73 and CD109). Transduction of fibroblasts with a lentivirus encoding the wild-type protein partially rescued the deficiency of GPI-anchored proteins. These findings highlight the role of the transamidase complex in the development and function of the cerebellum and the skeletal system.


Assuntos
Aciltransferases/genética , Atrofia/genética , Doenças Ósseas Metabólicas/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Glicoproteínas de Membrana/genética , Mutação/genética , Adolescente , Adulto , Alelos , Cerebelo/patologia , Criança , Pré-Escolar , Exoma/genética , Feminino , Fibroblastos/patologia , Glicosilfosfatidilinositóis/genética , Humanos , Masculino , Hipotonia Muscular/genética , Linhagem , RNA Mensageiro/genética , Convulsões/genética
15.
Hum Mutat ; 38(10): 1365-1371, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28649782

RESUMO

Pathogenic variants in genes encoding components of the BRG1-associated factor (BAF) chromatin remodeling complex have been associated with intellectual disability syndromes. We identified heterozygous, novel variants in ACTL6A, a gene encoding a component of the BAF complex, in three subjects with varying degrees of intellectual disability. Two subjects have missense variants affecting highly conserved amino acid residues within the actin-like domain. Missense mutations in the homologous region in yeast actin were previously reported to be dominant lethal and were associated with impaired binding of the human ACTL6A to ß-actin and BRG1. A third subject has a splicing variant that creates an in-frame deletion. Our findings suggest that the variants identified in our subjects may have a deleterious effect on the function of the protein by disturbing the integrity of the BAF complex. Thus, ACTL6A gene mutation analysis should be considered in patients with intellectual disability, learning disabilities, or developmental language disorder.


Assuntos
Actinas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Adolescente , Criança , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Exoma , Face , Feminino , Deformidades Congênitas da Mão/fisiopatologia , Heterozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Micrognatismo/genética , Micrognatismo/fisiopatologia , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Ligação Proteica , Fatores de Transcrição/genética
16.
Am J Hum Genet ; 100(1): 91-104, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939640

RESUMO

Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromatina/metabolismo , Histonas/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas Nucleares/genética , Acetilação , Adolescente , Alelos , Animais , Proteínas de Transporte/genética , Criança , Cromatina/química , Deficiências do Desenvolvimento/genética , Face/anormalidades , Feminino , Histona Acetiltransferases/genética , Humanos , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipotonia Muscular/genética , Síndrome
17.
Mol Cell Biol ; 34(18): 3374-87, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25002529

RESUMO

Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family whose function is largely unknown. Given the central role of MAPKs in T cell development, we hypothesized that ERK3 may regulate thymocyte development. Here we have shown that ERK3 deficiency leads to a 50% reduction in CD4(+) CD8(+) (DP) thymocyte number. Analysis of hematopoietic chimeras revealed that the reduction in DP thymocytes is intrinsic to hematopoietic cells. We found that early thymic progenitors seed the Erk3(-/-) thymus and can properly differentiate and proliferate to generate DP thymocytes. However, ERK3 deficiency results in a decrease in the DP thymocyte half-life, associated with a higher level of apoptosis. As a consequence, ERK3-deficient DP thymocytes are impaired in their ability to make successful secondary T cell receptor alpha (TCRα) gene rearrangement. Introduction of an already rearranged TCR transgene restores thymic cell number. We further show that knock-in of a catalytically inactive allele of Erk3 fails to rescue the loss of DP thymocytes. Our results uncover a unique role for ERK3, dependent on its kinase activity, during T cell development and show that this atypical MAPK is essential to sustain DP survival during RAG-mediated rearrangements.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteína Quinase 6 Ativada por Mitógeno/genética , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Timócitos/citologia , Timo/citologia , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/enzimologia , Linfócitos T CD8-Positivos/enzimologia , Domínio Catalítico , Diferenciação Celular/genética , Proliferação de Células , Sobrevivência Celular , Embrião de Mamíferos , Técnicas de Introdução de Genes , Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Timócitos/imunologia
18.
PLoS One ; 9(1): e86681, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475167

RESUMO

The classical mitogen-activated protein kinases (MAPKs) ERK1 and ERK2 are activated upon stimulation of cells with a broad range of extracellular signals (including antigens) allowing cellular responses to occur. ERK3 is an atypical member of the MAPK family with highest homology to ERK1/2. Therefore, we evaluated the role of ERK3 in mature T cell response. Mouse resting T cells do not transcribe ERK3 but its expression is induced in both CD4⁺ and CD8⁺ T cells following T cell receptor (TCR)-induced T cell activation. This induction of ERK3 expression in T lymphocytes requires activation of the classical MAPK ERK1 and ERK2. Moreover, ERK3 protein is phosphorylated and associates with MK5 in activated primary T cells. We show that ERK3-deficient T cells have a decreased proliferation rate and are impaired in cytokine secretion following in vitro stimulation with low dose of anti-CD3 antibodies. Our findings identify the atypical MAPK ERK3 as a new and important regulator of TCR-induced T cell activation.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Celular/imunologia , Ativação Linfocitária/imunologia , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Linfócitos T/imunologia , Animais , Proliferação de Células , Citocinas/metabolismo , Primers do DNA/genética , Citometria de Fluxo , Immunoblotting , Imunoprecipitação , Camundongos , Proteína Quinase 6 Ativada por Mitógeno/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo , beta-Galactosidase
19.
J Proteome Res ; 12(1): 272-81, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23157168

RESUMO

Affinity purification combined with tandem mass spectrometry (AP-MS/MS) is a well-established method used to discover interaction partners for a given protein of interest. Because most AP-MS/MS approaches are performed using the soluble fraction of whole cell extracts (WCE), information about the cellular compartments where the interactions occur is lost. More importantly, classical AP-MS/MS often fails to identify interactions that take place in the nonsoluble fraction of the cell, for example, on the chromatin or membranes; consequently, protein complexes that are less soluble are underrepresented. In this paper, we introduce a method called multiple cell compartment AP-MS/MS (MCC-AP-MS/MS), which identifies the interactions of a protein independently in three fractions of the cell: the cytoplasm, the nucleoplasm, and the chromatin. We show that this fractionation improves the sensitivity of the method when compared to the classical affinity purification procedure using soluble WCE while keeping a very high specificity. Using three proteins known to localize in various cell compartments as baits, the CDK9 subunit of transcription elongation factor P-TEFb, the RNA polymerase II (RNAP II)-associated protein 4 (RPAP4), and the largest subunit of RNAP II, POLR2A, we show that MCC-AP-MS/MS reproducibly yields fraction-specific interactions. Finally, we demonstrate that this improvement in sensitivity leads to the discovery of novel interactions of RNAP II carboxyl-terminal domain (CTD) interacting domain (CID) proteins with POLR2A.


Assuntos
Compartimento Celular , Cromatografia de Afinidade/métodos , Proteínas , Espectrometria de Massas em Tandem/métodos , Compartimento Celular/genética , Compartimento Celular/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Fosforilação , Fator B de Elongação Transcricional Positiva/metabolismo , Ligação Proteica , Proteínas/química , Proteínas/isolamento & purificação , Proteínas/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transcrição Genética
20.
Mol Cell Biol ; 30(24): 5752-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20956558

RESUMO

Erk4 and Erk3 are atypical members of the mitogen-activated protein (MAP) kinase family. The high sequence identity of Erk4 and Erk3 proteins and the similar organization of their genes imply that the two protein kinases are paralogs. Recently, we have shown that Erk3 function is essential for neonatal survival and critical for the establishment of fetal growth potential and pulmonary function. To investigate the specific functions of Erk4, we have generated mice with a targeted disruption of the Mapk4 gene. We show that Erk4-deficient mice are viable and fertile and exhibit no gross morphological or physiological anomalies. Loss of Erk4 is not compensated by changes in Erk3 expression or activity during embryogenesis or in adult tissues. We further demonstrate that additional loss of Erk4 does not exacerbate the fetal growth restriction and pulmonary immaturity phenotypes of Erk3(-/-) mice and does not compromise the viability of Erk3(+/-) neonates. Interestingly, behavioral phenotyping revealed that Erk4-deficient mice manifest depression-like behavior in the forced-swimming test. Our analysis indicates that the MAP kinase Erk4 is dispensable for mouse embryonic development and reveals that Erk3 and Erk4 have acquired specialized functions through evolutionary diversification.


Assuntos
Isoenzimas/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Animais , Comportamento Animal/fisiologia , Células Cultivadas , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Genótipo , Isoenzimas/genética , Camundongos , Camundongos Knockout , Proteína Quinase 6 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/genética , Neurogênese/fisiologia , Testes Neuropsicológicos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA