Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(43): 16437-16447, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31651004

RESUMO

The synthesis of a novel Rh(i)-aryl complex is detailed and its ability to serve as an initiator in the stereospecific polymerisation of phenylacetylene evaluated. Targeting the Rh(i) species, (2-phenylnaphthalen-1-yl)rhodium(i)(2,5-norbornadiene)tris(para-fluorophenylphosphine), Rh(nbd)(P(4-FC6H4)3)(2-PhNapth), following recrystallization we obtained the isomeric (2-(naphthalen-2-yl)phenyl)rhodium(i) complex, Rh(nbd)(P(4-FC6H4)3)(2-NapthPh), as determined by X-ray single-crystal structure analysis, and confirmed by X-ray powder diffraction. The isolation of the latter species was proposed to occur from the target (2-PhNapth) derivative via an intramolecular 1,4-Rh atom migration. This supposition was supported by density functional theory (DFT) calculations that indicated the isolated (2-NapthPh) derivative has lower energy (-19 kJ mol-1) than the targeted complex. The structure of the isolated (2-NapthPh) species was confirmed by multinuclear NMR spectroscopy including 2D 31P-103Rh{1H, 103Rh}, heteronuclear multiple-quantum correlation (HMQC) experiments; however, NMR analysis indicated the presence of a second, minor species in solution in an approximate 1 : 4 ratio with the 2-NapthPh complex. The minor species was identified as a second structural isomer, the 3-phenylnaphthyl derivative, proposed to be formed under a dynamic equilibrium with the 2-NapthPh derivative via a second 1,4-Rh atom migration. DFT calculations indicate that this 1,4-migration proceeds through a low-energy pathway involved in the oxidative addition of a C-H bond to Rh followed by a reductive elimination with the distribution of the products being thermodynamically controlled. The recrystallized Rh(nbd)(P(4-FC6H4)3)(2-NapthPh) complex was subsequently evaluated as an initiator in the polymerisation of phenylacetylene (PA); gratifyingly, the Rh(i) species was an active initiating species with the pseudo-first-order kinetic and molecular weight evolution vs time plots both linear implying a controlled polymerisation while yielding (co)polymers with low dispersities (D = Mw/Mn typically ≤1.25) and high cis-transoidal stereoregularity (>95%). Typical initiation efficiencies, while not quantitative (as judged by size exclusion chromatography), were nonetheless high at ca. 0.8. The presence of the minor 3-phenylnaphthyl species when in solution is proposed to be the cause of the observed non-quantitative initiation.

2.
J Phys Chem Lett ; 10(12): 3465-3471, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31184156

RESUMO

Herein we employed a first-principles method based on density functional theory to investigate the surface energy and growth kinetics of wurtzite nanoplatelets to elucidate why nanoplatelets exhibit a uniform thickness of eight monolayers. We synthesized a series of wurtzite nanoplatelets (ZnSe, ZnS, ZnTe, and CdSe) with an atomically uniform thickness of eight monolayers. As a representative example, the growth mechanism of 1.39 nm thick (eight monolayers) wurtzite ZnSe nanoplatelets was studied to substantiate the proposed growth kinetics. The results show that the growth of the seventh and eighth layers along the [112̅0] direction of 0.99 nm (six monolayers) ZnSe magic-size nanoclusters is accessible, whereas the growth of the ninth layer is unlikely to occur because the formation energy is large. This work not only gives insights into the synthesis of atomically uniform thick wurtzite semiconductor nanoplatelets but also opens up new avenues to their applications in light-emitting diodes, catalysis, detectors, and lasers.

3.
Dalton Trans ; 48(15): 5048-5057, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30916691

RESUMO

Altering the decomposition pathway of potassium alanate, KAlH4, with aluminium sulfide, Al2S3, presents a new opportunity to release all of the hydrogen, increase the volumetric hydrogen capacity and avoid complications associated with the formation of KH and molten K. Decomposition of 6KAlH4-Al2S3 during heating under dynamic vacuum began at 185 °C, 65 °C lower than for pure KAlH4, and released 71% of the theoretical hydrogen content below 300 °C via several unknown compounds. The major hydrogen release event, centred at 276 °C, was associated with two new compounds indexed with monoclinic (a = 10.505, b = 7.492, c = 11.772 Å, ß = 122.88°) and hexagonal (a = 10.079, c = 7.429 Å) unit cells, respectively. Unlike the 6NaAlH4-Al2S3 system, the 6KAlH4-Al2S3 system did not have M3AlH6 (M = alkali metal) as one of the intermediate decomposition products nor were the final products M2S and Al observed. Decomposition performed under hydrogen pressure initially followed a similar reaction pathway to that observed during heating under vacuum but resulted in partial melting of the sample between 300 and 350 °C. The measured enthalpy of hydrogen absorption (ΔHabs) was in the range -44.5 to -51.1 kJ mol-1 H2, which is favourable for moderate temperature hydrogen applications. Although, the hydrogen capacity decreases during consecutive H2 release and uptake cycles, the presence of excess amounts of aluminium allow for further optimisation of hydrogen storage properties.

5.
Adv Mater ; 30(13): e1706287, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29423964

RESUMO

Single-atom catalysts (SACs) are the smallest entities for catalytic reactions with projected high atomic efficiency, superior activity, and selectivity; however, practical applications of SACs suffer from a very low metal loading of 1-2 wt%. Here, a class of SACs based on atomically dispersed transition metals on nitrogen-doped carbon nanotubes (MSA-N-CNTs, where M = Ni, Co, NiCo, CoFe, and NiPt) is synthesized with an extraordinarily high metal loading, e.g., 20 wt% in the case of NiSA-N-CNTs, using a new multistep pyrolysis process. Among these materials, NiSA-N-CNTs show an excellent selectivity and activity for the electrochemical reduction of CO2 to CO, achieving a turnover frequency (TOF) of 11.7 s-1 at -0.55 V (vs reversible hydrogen electrode (RHE)), two orders of magnitude higher than Ni nanoparticles supported on CNTs.

6.
Phys Chem Chem Phys ; 20(4): 2274-2283, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29303173

RESUMO

Magnesium hydride (MgH2) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH2 to form a range of Mg(HxF1-x)2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H0.85F0.15)2 having a maximum rate of H2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H2 (theoretical 5.4 wt% H2). An extremely stable Mg(H0.43F0.57)2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H2 is not released until above 505 °C. PCI measurements of Mg(H0.85F0.15)2 have determined the enthalpy (ΔHdes) to be 73.6 ± 0.2 kJ mol-1 H2 and entropy (ΔSdes) to be 131.2 ± 0.2 J K-1 mol-1 H2, which is slightly lower than MgH2 with ΔHdes of 74.06 kJ mol-1 H2 and ΔSdes = 133.4 J K-1 mol-1 H2. Cycling studies of Mg(H0.85F0.15)2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH2, increasing the thermal operating temperatures for technological applications.

7.
Pharm Res ; 35(1): 7, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29294198

RESUMO

PURPOSE: This study aims to investigate the influence of different storage humidity conditions on crystallization and aerosol performance of inhalable spray dried amorphous powder formulations (Ciprofloxacin hydrochloride as the model drug). METHODS: The spray dried samples were stored at 20%, 55% and 75% relative humidity (RH). Crystallinity was monitored by Powder X-ray diffraction (PXRD), and particle morphology was measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Aerosol performance was evaluated using a multi-stage liquid impinger (MSLI). RESULTS: PXRD diffractograms showed the spray dried Ciprofloxacin stored at 20% RH for three weeks were amorphous; whereas those stored at 55% RH and 75% RH started crystallizing after one hour. Fine particle fraction (FPF) of the particles was improved from 28% to 42% after storage at 55% RH for three days. Such improvement was attributed to the crystallization of amorphous powders, which led to increased particle roughness and reduced particulate contact area, as visualized by SEM and quantified by AFM. A linear relationship was observed between degree of crystallinity/crystallite size and FPF (R2 = 0.94 and R2 = 0.96, respectively). However, deterioration in aerosol performance was observed after storage at 75% RH due to formation of inter-particulate liquid/solid bridges, as confirmed by SEM. CONCLUSIONS: This study provides a fundamental understanding in moisture-induced physical and aerosol instability of the spray dried powder formulations.


Assuntos
Aerossóis/química , Cristalização/métodos , Composição de Medicamentos/métodos , Pós/química , Vapor , Administração por Inalação , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão/métodos , Ciprofloxacino , Humanos , Umidade , Cinética , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula , Propriedades de Superfície , Difração de Raios X/métodos
8.
Faraday Discuss ; 204: 251-269, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28805831

RESUMO

Sodium thiosulphate (Na2S2O3) films were synthesized on carbon steel substrates through solution deposition, and a film formation growth mechanism is delineated in detail herein. Dislocation-driven film formation took place at the lower concentration of Na2S2O3 (0.1 M) studied, where screw dislocation loops were identified. Interestingly, we observed the co-existence of screw dislocation spiral loops and hierarchically-ordered molecular assembly in the film, and showed the importance of hierarchical morphology in the origin of screw dislocation. The screw dislocation loops were, however, distorted at the higher studied concentration of Na2S2O3 (0.5 M), and no hierarchical structures were formed. The mechanisms of film formation are discussed in detail and provide new insights into our understanding regarding morphology of the hierarchical molecular assembly, screw dislocation loop formation, and the role of chemical elements for their development. The main crystalline and amorphous phases in the surface films were identified as pyrite/mackinawite and magnetite. As sodium thiosulphate is widely used for energy, corrosion inhibition, nanoparticle synthesis and catalysis applications, the knowledge generated in this study is applicable to the fields of corrosion, materials science, materials chemistry and metallurgy.

9.
Eur J Pharm Biopharm ; 94: 160-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26007290

RESUMO

The amino acid L-leucine has been demonstrated to act as a lubricant and improve the dispersibility of otherwise cohesive fine particles. It was hypothesized that optimum surface L-leucine concentration is necessary to achieve optimal surface and bulk powder properties. Polyvinylpyrrolidone was spray dried with different concentration of L-leucine and the change in surface composition of the formulations was determined using X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectrometry (ToF-SIMS). The formulations were also subjected to powder X-ray diffraction analysis in order to understand the relationship between surface concentration and solid-state properties of L-leucine. In addition, the morphology, surface energy and bulk cohesion of spray dried formulations were also assessed to understand the relation between surface L-leucine concentration and surface and bulk properties. The surface concentration of L-leucine increased with higher feed concentrations and plateaued at about 10% L-leucine. Higher surface L-leucine concentration also resulted in the formation of larger L-leucine crystals and not much change in crystal size was noted above 10% L-leucine. A change in surface morphology of particles from spherical to increasingly corrugated was also observed with increasing surface l-leucine concentration. Specific collapsed/folded over particles were only seen in formulations with 10% or higher l-leucine feed concentration suggesting a change in particle surface formation process. In addition, bulk cohesion also reduced and approached a minimum with 10% L-leucine concentration. Thus, the surface concentration of L-leucine governs particle formation and optimum surface L-leucine concentration results in optimum surface and bulk powder properties.


Assuntos
Dessecação , Leucina/química , Lubrificantes/química , Tecnologia Farmacêutica/métodos , Aerossóis , Química Farmacêutica , Cromatografia Gasosa , Cristalização , Cristalografia por Raios X , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Povidona/química , Difração de Pó , Pós , Propriedades de Superfície
10.
J Synchrotron Radiat ; 19(Pt 1): 39-47, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22186642

RESUMO

This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray-Farthing-Chen Cambridge electrowinning cell, featuring molten CaCl(2) as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed.

11.
J Synchrotron Radiat ; 18(Pt 6): 938-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21997921

RESUMO

Equations for the calculation of the dimensions of a gauge volume, also known as the active volume or diffraction lozenge, in an energy-dispersive diffraction experiment where the detector is collimated by two ideal slits have been developed. Equations are given for equatorially divergent and parallel incident X-ray beams, assuming negligible axial divergence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA