Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(36): 12320-12328, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34460223

RESUMO

Electrochemical impedance spectroscopy (EIS) is a powerful tool to measure and quantify the system impedance. However, EIS only provides an average result from the entire electrode surface. Here, we demonstrated a reflection impedance microscope (RIM) that allows us to image and quantify the localized impedance on conductive surfaces. The RIM is based on the sensitive dependence between the materials' optical properties, such as permittivity, and their local surface charge densities. The localized charge density variations introduced by the impedance measurements will lead to optical reflectivity changes on electrode surfaces. Our experiments demonstrated that reflectivity modulations are linearly proportional to the surface charge density on the electrode and the measurements show good agreement with the simple free electron gas model. The localized impedance distribution was successfully extracted from the reflectivity measurements together with the Randles equivalent circuit model. In addition, RIM is used to quantify the impedance on different conductive surfaces, such as indium tin oxide, gold film, and stainless steel electrodes. A polydimethylsiloxane-patterned electrode surface was used to demonstrate the impedance imaging capability of RIM. In the end, a single-cell impedance imaging was obtained by RIM.


Assuntos
Espectroscopia Dielétrica , Ouro , Condutividade Elétrica , Impedância Elétrica , Eletrodos
2.
ACS Sens ; 6(2): 485-492, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33251805

RESUMO

Many fundamentally important biological phenomena involve the cells to establish and break down the adhesive interactions with the substrate. Here, we report a novel optical method that could directly image the electrochemical impedance of cell-substrate interactions at the single cell level with conventional microscopes and cameras. A thin conductive polymer layer on top of the ITO substrate (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), PEDOT:PSS) is used as the impedance imaging and sensing layer. A sinusoidal electrochemical potential is applied to the conductive polymer film, and the ion intercalation and transportation in the PEDOT:PSS layer will change the absorption spectrum of the polymer film. The attachment of the cells to the substrate will block and affect the ion doping and dedoping process, and therefore change the color of the polymer film. This process can be captured by any upright or inverted microscope with a simple camera. Utilizing this method, we have successfully imaged the impedance of single-cell attachment, observed the variations of cell-substrate interactions, and measured the impedance changes at different stages of the attachment process. This paper has proposed and successfully demonstrated a new strategy that translates the electrochemical impedance information to an optical signal that could be imaged and used to quantify the local responses. In addition, this method does not need any specially designed optical setup, which may lead to its broad applications in the clinics and biological research laboratories.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Condutividade Elétrica , Impedância Elétrica
3.
Anal Methods ; 11(1): 8-16, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31490456

RESUMO

In vivo, microvasculature provides oxygen, nutrients, and soluble factors necessary for cell survival and function. The highly tortuous, densely-packed, and interconnected three-dimensional (3D) architecture of microvasculature ensures that cells receive these crucial components. The ability to duplicate microvascular architecture in tissue-engineered models could provide a means to generate large-volume constructs as well as advanced microphysiological systems. Similarly, the ability to induce realistic flow in engineered microvasculature is crucial to recapitulating in vivo-like flow and transport. Advanced biofabrication techniques are capable of generating 3D, biomimetic microfluidic networks in hydrogels, however, these models can exhibit systemic aberrations in flow due to incorrect boundary conditions. To overcome this problem, we developed an automated method for generating synthetic augmented channels that induce the desired flow properties within three-dimensional microfluidic networks. These augmented inlets and outlets enforce the appropriate boundary conditions for achieving specified flow properties and create a three-dimensional output useful for image-guided fabrication techniques to create biomimetic microvascular networks.

4.
Soft Matter ; 14(32): 6728-6736, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30062351

RESUMO

The swelling responses of thin polymer networks were examined as a function of primary polymer architecture. Thin films of linear or bottlebrush polystyrene were cast on polystyrene-grafted substrates, and surface-attached networks were prepared with a radiation crosslinking reaction. The dry and equilibrated swollen thicknesses were both determined with spectroscopic ellipsometry. The dry thickness, which reflects the insoluble fraction of the film after crosslinking, depends on the primary polymer size and radiation dose but is largely independent of primary polymer architecture. When networks are synthesized with a high radiation dose, producing a high density of crosslinks, the extent of swelling is similar for all primary polymer architectures and molecular weights. However, when networks are synthesized with a low radiation dose, the extent of swelling is reduced as the primary polymer becomes larger or increasingly branched. These trends are consistent with a simple Flory model for equilibrium swelling that describes the effects of branch junctions and radiation crosslinks on network elasticity.

5.
Lab Chip ; 16(9): 1625-35, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27025227

RESUMO

We present a microfluidic immunoassay platform based on the use of linear microretroreflectors embedded in a transparent polymer layer as an optical sensing surface, and micron-sized magnetic particles as light-blocking labels. Retroreflectors return light directly to its source and are highly detectable using inexpensive optics. The analyte is immuno-magnetically pre-concentrated from a sample and then captured on an antibody-modified microfluidic substrate comprised of embedded microretroreflectors, thereby blocking reflected light. Fluidic force discrimination is used to increase specificity of the assay, following which a difference imaging algorithm that can see single 3 µm magnetic particles without optical calibration is used to detect and quantify signal intensity from each sub-array of retroreflectors. We demonstrate the utility of embedded microretroreflectors as a new sensing modality through a proof-of-concept immunoassay for a small, obligate intracellular bacterial pathogen, Rickettsia conorii, the causative agent of Mediterranean Spotted Fever. The combination of large sensing area, optimized surface chemistry and microfluidic protocols, automated image capture and analysis, and high sensitivity of the difference imaging results in a sensitive immunoassay with a limit of detection of roughly 4000 R. conorii per mL.


Assuntos
Imunoensaio/instrumentação , Dispositivos Lab-On-A-Chip , Rickettsia conorii/isolamento & purificação , Animais , Anticorpos Imobilizados/metabolismo , Automação Laboratorial , Células Imobilizadas , Desenho Assistido por Computador , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Imunoensaio/métodos , Separação Imunomagnética , Limite de Detecção , Fenômenos Magnéticos , Microscopia , Microscopia Eletrônica de Varredura , Microesferas , Microtecnologia/métodos , Polimetil Metacrilato/química , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Rickettsia conorii/crescimento & desenvolvimento , Rickettsia conorii/imunologia , Propriedades de Superfície
6.
ACS Photonics ; 1(3): 241-245, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25530982

RESUMO

A high-throughput optical biosensing technique is proposed and demonstrated. This hybrid technique combines optical transmission of nanoholes with colorimetric silver staining. The size and spacing of the nanoholes are chosen so that individual nanoholes can be independently resolved in massive parallel using an ordinary transmission optical microscope, and, in place of determining a spectral shift, the brightness of each nanohole is recorded to greatly simplify the readout. Each nanohole then acts as an independent sensor, and the blocking of nanohole optical transmission by enzymatic silver staining defines the specific detection of a biological agent. Nearly 10000 nanoholes can be simultaneously monitored under the field of view of a typical microscope. As an initial proof of concept, biotinylated lysozyme (biotin-HEL) was used as a model analyte, giving a detection limit as low as 0.1 ng/mL.

7.
Anal Chem ; 86(18): 9029-35, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25133758

RESUMO

Point-of-care detection of pathogens is medically valuable but poses challenging trade-offs between instrument complexity and clinical and analytical sensitivity. Here we introduce a diagnostic platform utilizing lithographically fabricated micron-scale forms of cubic retroreflectors, arguably one of the most optically detectable human artifacts, as reporter labels for use in sensitive immunoassays. We demonstrate the applicability of this novel optical label in a simple assay format in which retroreflector cubes are first mixed with the sample. The cubes are then allowed to settle onto an immuno-capture surface, followed by inversion for gravity-driven removal of nonspecifically bound cubes. Cubes bridged to the capture surface by the analyte are detected using inexpensive, low-numerical aperture optics. For model bacterial and viral pathogens, sensitivity in 10% human serum was found to be 10(4) bacterial cells/mL and 10(4) virus particles/mL, consistent with clinical utility.


Assuntos
Bactérias/isolamento & purificação , Imunoensaio , Técnicas Microbiológicas/métodos , Vírus/isolamento & purificação , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Bactérias/imunologia , Escherichia coli/imunologia , Escherichia coli/isolamento & purificação , Humanos , Levivirus/imunologia , Levivirus/isolamento & purificação , Sistemas Automatizados de Assistência Junto ao Leito , Polipropilenos/química , Vírus/imunologia
8.
Appl Opt ; 53(17): 3647-55, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24921128

RESUMO

A retroreflective imaging system for imaging microscopic targets over macroscopic sampling areas is introduced. Detection of microorganism-bound retroreflector (RR) targets across millimeter-scale samples is implemented according to retroreflection directionality, collimation, and contrast design characteristics. Retroreflection directionality is considered for corner-cube (CC) and spherical geometries. Spherical-RRs improve directionality and reliability. Retroreflection collimation is considered for spherical-RRs. Retroreflective images for micro-CC-RRs and micro-spherical-RRs with varying refractive indices show optimal results for high refractive index BaTiO3 micro-spherical-RRs. A differential imaging technique improves retroreflection contrast by 35 dB. High refractive index micro-spherical-RRs and differential imaging, together, can detect microscopic RR targets across macroscopic areas.

9.
PLoS One ; 8(8): e73083, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967340

RESUMO

We describe a low-energy glow-discharge process using reactive ion etching system that enables non-circular device patterns, such as squares or hexagons, to be formed from a precursor array of uniform circular openings in polymethyl methacrylate, PMMA, defined by electron beam lithography. This technique is of a particular interest for bit-patterned magnetic recording medium fabrication, where close packed square magnetic bits may improve its recording performance. The process and results of generating close packed square patterns by self-limiting low-energy glow-discharge are investigated. Dense magnetic arrays formed by electrochemical deposition of nickel over self-limiting formed molds are demonstrated.


Assuntos
Fenômenos Magnéticos , Nanotecnologia/instrumentação , Técnicas Eletroquímicas , Nanotecnologia/economia , Propriedades de Superfície , Temperatura
10.
PLoS One ; 8(5): e56835, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717382

RESUMO

In this work, a collimated helium beam was used to activate a thiol-poly(ethylene glycol) (SH-PEG) monolayer on gold to selectively capture proteins in the exposed regions. Protein patterns were formed at high throughput by exposing a stencil mask placed in proximity to the PEG-coated surface to a broad beam of helium particles, followed by incubation in a protein solution. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) spectra showed that SH-PEG molecules remain attached to gold after exposure to beam doses of 1.5-60 µC/cm(2) and incubation in PBS buffer for one hour, as evidenced by the presence of characteristic ether and methoxy peaks at 1120 cm(-1) and 2870 cm(-1), respectively. X-ray Photoelectron Spectroscopy (XPS) spectra showed that increasing beam doses destroy ether (C-O) bonds in PEG molecules as evidenced by the decrease in carbon C1s peak at 286.6 eV and increased alkyl (C-C) signal at 284.6 eV. XPS spectra also demonstrated protein capture on beam-exposed PEG regions through the appearance of a nitrogen N1s peak at 400 eV and carbon C1s peak at 288 eV binding energies, while the unexposed PEG areas remained protein-free. The characteristic activities of avidin and horseradish peroxidase were preserved after attachment on beam-exposed regions. Protein patterns created using a 35 µm mesh mask were visualized by localized formation of insoluble diformazan precipitates by alkaline phosphatase conversion of its substrate bromochloroindoyl phosphate-nitroblue tetrazolium (BCIP-NBT) and by avidin binding of biotinylated antibodies conjugated on 100 nm gold nanoparticles (AuNP). Patterns created using a mask with smaller 300 nm openings were detected by specific binding of 40 nm AuNP probes and by localized HRP-mediated deposition of silver nanoparticles. Corresponding BSA-passivated negative controls showed very few bound AuNP probes and little to no enzymatic formation of diformazan precipitates or silver nanoparticles.


Assuntos
Hélio , Gases em Plasma , Polietilenoglicóis/química , Avidina/química , Compostos Azo/química , Proteínas de Bactérias/química , Precipitação Química , Ouro/química , Peroxidase do Rábano Silvestre/química , Proteínas Imobilizadas/química , Nanopartículas Metálicas/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
11.
Biointerphases ; 8(1): 9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24706125

RESUMO

We have developed a technique for the high-resolution, self-aligning, and high-throughput patterning of antibody binding functionality on surfaces by selectively changing the reactivity of protein-coated surfaces in specific regions of a workpiece with a beam of energetic helium particles. The exposed areas are passivated with bovine serum albumin (BSA) and no longer bind the antigen. We demonstrate that patterns can be formed (1) by using a stencil mask with etched openings that forms a patterned exposure, or (2) by using angled exposure to cast shadows of existing raised microstructures on the surface to form self-aligned patterns. We demonstrate the efficacy of this process through the patterning of anti-lysozyme, anti-Norwalk virus, and anti-Escherichia coli antibodies and the subsequent detection of each of their targets by the enzyme-mediated formation of colored or silver deposits, and also by binding of gold nanoparticles. The process allows for the patterning of three-dimensional structures by inclining the sample relative to the beam so that the shadowed regions remain unaltered. We demonstrate that the resolution of the patterning process is of the order of hundreds of nanometers, and that the approach is well-suited for high throughput patterning.


Assuntos
Anticorpos/química , Hélio/química , Animais , Anticorpos/imunologia , Bovinos , Escherichia coli/imunologia , Muramidase/imunologia , Nanopartículas/química , Vírus Norwalk/imunologia , Ligação Proteica , Soroalbumina Bovina , Propriedades de Superfície
12.
IEEE Sens J ; 13(11): 4534-4541, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26413034

RESUMO

We demonstrate the feasibility of using optical coherence tomography (OCT) to image and detect 2.8 µm diameter microparticles (stationary and moving) on a highly-reflective gold surface both in clear media and under skin in vitro. The OCT intensity signal can clearly report the microparticle count, and the OCT response to the number of microparticles shows a good linearity. The detect ability of the intensity change (2.9% ± 0.5%) caused by an individual microparticle shows the high sensitivity of monitoring multiple particles using OCT. An optical sensing method based on this feasibility study is described for continuously measuring blood sugar levels in the subcutaneous tissue, and a molecular recognition unit is designed using competitive binding to modulate the number of bound microparticles as a function of glucose concentration. With further development, an ultra-small, implantable sensor might provide high specificity and sensitivity for long-term continuous monitoring of blood glucose concentration.

13.
ACS Appl Mater Interfaces ; 4(8): 4015-23, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22817649

RESUMO

We report a simple approach to control the morphology of polymer/fullerene solar cells based on electron-beam patterning of polymer semiconductors. This process generates conductive nanostructures or microstructures through an in situ cross-linking reaction, where the size, shape, and density of polymer domains are all tunable parameters. Cross-linked polymer structures are resistant to heat and solvents, so they can be incorporated into devices that require thermal annealing or solution-based processing. We demonstrate this method by building "gradient" and nanostructured poly(3-hexylthiophene)/fullerene solar cells. The power-conversion efficiency of these model devices improves with increasing interfacial area. The flexible methodology can be used to study the effects of active layer design on optoelectronic function.

14.
PLoS One ; 7(5): e37440, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693574

RESUMO

Ion Beam Aperture Array Lithography was applied to top-down fabrication of large dense (10(8)-10(9) particles/cm(2)) arrays of uniform micron-scale particles at rates hundreds of times faster than electron beam lithography. In this process, a large array of helium ion beamlets is formed when a stencil mask containing an array of circular openings is illuminated by a broad beam of energetic (5-8 keV) ions, and is used to write arrays of specific repetitive patterns. A commercial 5-micrometer metal mesh was used as a stencil mask; the mesh size was adjusted by shrinking the stencil openings using conformal sputter-deposition of copper. Thermal evaporation from multiple sources was utilized to form magnetic particles of varied size and thickness, including alternating layers of gold and permalloy. Evaporation of permalloy layers in the presence of a magnetic field allowed creation of particles with uniform magnetic properties and pre-determined magnetization direction. The magnetic properties of the resulting particles were characterized by Vibrating Sample Magnetometry. Since the orientation of the particles on the substrate before release into suspension is known, the orientation-dependent magnetic properties of the particles could be determined.


Assuntos
Imãs/química , Nanopartículas/química , Nanotecnologia/métodos , Anisotropia , Engenharia , Fenômenos Magnéticos , Tamanho da Partícula , Impressão , Silício/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-25530695

RESUMO

Corner cube retroreflectors are objects with three mutually perpendicular reflective surfaces that return light directly to its source and are therefore extremely bright and easy to detect. In this work, we have fabricated suspended corner cube retroreflectors, 5 microns in size, consisting of a transparent epoxy core and three surfaces coated with gold as ultra-bright labels for use in a rapid, low-labor diagnostic platform. The authors have demonstrated that individual cubes are easily imaged using low-cost, low numerical aperture objectives in suspension and that they remain suspended over long periods of time. Moreover, we have demonstrated that the gold outer surfaces can be decorated with proteins, and that individual cubes can be bound to magnetic sample preparation particles bearing antibodies which recognize these proteins. The bound cubes can be imaged and tracked as they move through solution in response to an external magnetic field, and we have, as such, demonstrated the principle of the new biosensing approach.

16.
Biomed Opt Express ; 1(2): 367-377, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21258473

RESUMO

A new approach to in vivo biosensor design is introduced, based on the use of an implantable micron-sized retroreflector-based platform and non-invasive imaging of its surface reflectivity by Optical Coherence Tomography (OCT). The possibility of using OCT for the depth-resolved imaging and detection of micro-retroreflectors in highly turbid media, including tissue, is demonstrated. The maximum imaging depth for the detection of the micro-retroreflector-based platform within the surrounding media was found to be 0.91 mm for porcine tissue and 1.65 mm for whole milk. With further development, it may be possible to utilize OCT and micro-retroreflectors as a tool for continuous monitoring of analytes in the subcutaneous tissue.

17.
Nano Lett ; 7(10): 3246-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17725377

RESUMO

We describe a self-limiting, low-energy argon-ion-milling process that enables noncircular device patterns, such as squares or hexagons, to be formed using precursor arrays of uniform circular openings in poly(methyl methacrylate) defined using electron beam lithography. The proposed patterning technique is of particular interest for bit-patterned magnetic recording medium fabrication, where square magnetic bits result in improved recording system performance. Bit-patterned magnetic medium is among the primary candidates for the next generation magnetic recording technologies and is expected to extend the areal bit density limits far beyond 1 Tbit/in(2). The proposed patterning technology can be applied either for direct medium prototyping or for manufacturing of nanoimprint lithography templates or ion beam lithography stencil masks that can be utilized in mass production.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Polimetil Metacrilato/química , Polimetil Metacrilato/efeitos da radiação , Íons , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície
18.
Nano Lett ; 5(12): 2563-8, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16351216

RESUMO

We report a radically different approach to the versatile fabrication of nanometer-scale preselected patterns over large areas. Standard lithography, thin film deposition, and etching are used to fabricate arrays of ion-focusing microlenses (e.g., small round holes through a metal/insulator structure) on a substrate such as a silicon wafer. The substrate is then placed in a vacuum chamber, a broad-area collimated beam of ions is directed at the substrate, and electric potentials are applied to the lens arrays such that the ions focus at the bottoms of the holes (e.g., on the wafer surface). When the wafer is tilted off normal (with respect to the ion beam axis), the focal points in each hole are laterally displaced, allowing the focused beamlets to be rastered across the hole bottoms. In this "nanopantography" process, the desired pattern is replicated simultaneously in many closely spaced holes over an area limited only by the size of the broad-area ion beam. With the proper choice of ions and downstream gaseous ambient, the method can be used to deposit or etch materials. Data show that simultaneous impingement of an Ar(+) beam and a Cl(2) effusive beam on an array of 950-nm-diam lenses can be used to etch 10-nm-diam features into a Si substrate, a reduction of 95x. Simulations indicate that the focused "beamlet" diameters scale directly with lens diameter, thus a minimum feature size of approximately 1 nm should be possible with 90-nm-diam lenses that are at the limit of current photolithography. We expect nanopantography to become a viable method for overcoming one of the main obstacles in practical nanoscale fabrication: rapid, large-scale fabrication of virtually any shape and material nanostructure. Unlike all other focused ion or electron beam writing techniques, this self-aligned method is virtually unaffected by vibrations, thermal expansion, and other alignment problems that usually plague standard nanofabrication methods. This is because the ion focusing optics are built on the wafer.


Assuntos
Cristalização/métodos , Eletroquímica/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Silício/química , Conformação Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...