Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Eur Respir J ; 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537701

RESUMO

Inhaled corticosteroids (ICS) are widely prescribed for patients with chronic obstructive pulmonary disease (COPD), yet with variable outcomes and adverse reactions which may be genetically determined. The primary aim of the study was to identify the genetic determinants for FEV1 changes related to ICS therapy. In the Lung Health Study 2 (LHS-2), 1116 COPD patients were randomised to the ICS, triamcinolone acetonide (n=559), or placebo (n=557) with spirometry performed every 6 months for 3 years. We performed a pharmacogenomic genome-wide association study (GWAS) for the genotype-by-ICS treatment effect on 3 years of forced expiratory volume in 1 s (FEV1) changes (estimated as slope) in 802 genotyped LHS-2 participants. Replication was performed in 199 COPD patients randomised to the ICS, fluticasone or placebo. A total of five loci showed genotype-by-ICS interaction at p<5×10-6; of these, SNP rs111720447 on chromosome 7 was replicated (discovery p=4.8×10-6, replication p=5.9×10-5) with the same direction of interaction effect. ENCODE data revealed that in glucocorticoid treated (dexamethasone) A549 alveolar cell line, glucocorticoid receptor binding sites were located near SNP rs111720447. In stratified analyses of LHS-2, genotype at SNP rs111720447 was significantly associated with rate of FEV1 decline in patients taking ICS (C allele beta=56.35 mL·year-1, 95% confidence interval (CI)=29.96, 82.76 mL·yr-1) and also in patients who were assigned to placebo, though the relationship was weaker and in the opposite direction than that in the ICS group (C allele beta=-27.57 mL·year-1, 95% CI=-53.27, -1.87 mL·yr-1). The study uncovered genetic factors associated with FEV1 changes related to ICS in COPD patients, which may provide new insight on the potential biology of steroid responsiveness in COPD.

2.
Clin Epigenetics ; 11(1): 122, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443688

RESUMO

BACKGROUND: Although epigenetic mechanisms are important risk factors for allergic disease, few studies have evaluated DNA methylation differences associated with atopic dermatitis (AD), and none has focused on AD with eczema herpeticum (ADEH+). We will determine how methylation varies in AD individuals with/without EH and associated traits. We modeled differences in genome-wide DNA methylation in whole blood cells from 90 ADEH+, 83 ADEH-, and 84 non-atopic, healthy control subjects, replicating in 36 ADEH+, 53 ADEH-, and 55 non-atopic healthy control subjects. We adjusted for cell-type composition in our models and used genome-wide and candidate-gene approaches. RESULTS: We replicated one CpG which was significantly differentially methylated by severity, with suggestive replication at four others showing differential methylation by phenotype or severity. Not adjusting for eosinophil content, we identified 490 significantly differentially methylated CpGs (ADEH+ vs healthy controls, genome-wide). Many of these associated with severity measures, especially eosinophil count (431/490 sites). CONCLUSIONS: We identified a CpG in IL4 associated with serum tIgE levels, supporting a role for Th2 immune mediating mechanisms in AD. Changes in eosinophil level, a measure of disease severity, are associated with methylation changes, providing a potential mechanism for phenotypic changes in immune response-related traits.

3.
Cell Rep ; 27(5): 1422-1433.e4, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042470

RESUMO

This study evaluates HIV antibody responses and their evolution during the course of HIV infection. A phage display system is used to characterize antibody binding to >3,300 HIV peptides in 57 adults with early- to late-stage infection. We find that the number of unique epitopes targeted ("antibody breadth") increases early in infection and then stabilizes or declines. A decline in antibody breadth 9 months to 2 years after infection is associated with subsequent antiretroviral treatment (ART) initiation, and a faster decline in antibody breadth is associated with a shorter time to ART initiation. We identify 266 peptides with increasing antibody reactivity over time and 43 peptides with decreasing reactivity over time. These data are used to design a prototype four-peptide "serosignature" to predict duration of HIV infection. We also demonstrate that epitope engineering can be used to optimize peptide binding properties for applications such as cross-sectional HIV incidence estimation.

4.
Genome Biol Evol ; 11(5): 1417-1430, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942856

RESUMO

The metabolic conversion of dietary omega-3 and omega-6 18 carbon (18C) to long chain (>20 carbon) polyunsaturated fatty acids (LC-PUFAs) is vital for human life. The rate-limiting steps of this process are catalyzed by fatty acid desaturase (FADS) 1 and 2. Therefore, understanding the evolutionary history of the FADS genes is essential to our understanding of hominin evolution. The FADS genes have two haplogroups, ancestral and derived, with the derived haplogroup being associated with more efficient LC-PUFA biosynthesis than the ancestral haplogroup. In addition, there is a complex global distribution of these haplogroups that is suggestive of Neanderthal introgression. We confirm that Native American ancestry is nearly fixed for the ancestral haplogroup, and replicate a positive selection signal in Native Americans. This positive selection potentially continued after the founding of the Americas, although simulations suggest that the timing is dependent on the allele frequency of the ancestral Beringian population. We also find that the Neanderthal FADS haplotype is more closely related to the derived haplogroup and the Denisovan clusters closer to the ancestral haplogroup. Furthermore, the derived haplogroup has a time to the most recent common ancestor of 688,474 years before present. These results support an ancient polymorphism, as opposed to Neanderthal introgression, forming in the FADS region during the Pleistocene with possibly differential selection pressures on both haplogroups. The near fixation of the ancestral haplogroup in Native American ancestry calls for future studies to explore the potential health risk of associated low LC-PUFA levels in these populations.


Assuntos
Evolução Molecular , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/metabolismo , Hominidae/genética , Animais , Ácidos Graxos Dessaturases/metabolismo , Hominidae/metabolismo , Humanos , Índios Norte-Americanos/genética , Seleção Genética , Sibéria
7.
Artigo em Inglês | MEDLINE | ID: mdl-30610941

RESUMO

T. gondii (TOXO) infects over one billion people worldwide, yet the literature lacks a Genome Wide Association Study (GWAS) focused on genetic variants controlling the persistence of TOXO infection. To identify putative T. gondii susceptibility genes, we performed a GWAS using IgG seropositivity as the outcome variable in a discovery sample (n = 790) from an Ashkenazi dataset, and a second sample of predominately African Americans (The Grady Trauma Project, n = 285). We also performed a meta-analyses of the 2 cohorts. None of the SNPs in these analyses was statistically significant after Bonferroni correction for multiple comparisons. In the Ashkenazi population, the gene region of CHIA (chitinase) showed the most nominally significant association with TOXO. Prior studies have shown that the production of chitinase by macrophages in the brain responding to TOXO infection is crucial for controlling the burden of T. gondii cysts. We found a surprising number of genes involved in neurodevelopment and psychiatric disorders among our top hits even though our outcome variable was TOXO infection. In the meta-analysis combining the Ashkenazi and Grady Trauma Project samples, there was enrichment for genes implicated in schizophrenia spectrum disorders (p < .05). Upon limiting our sample to those without mental illness, two schizophrenia related genes (CNTNAP2, GABAR2) still had significant TOXO-associated variants at the p < .05 level, but did not pass the genome wide significance threshold after correction for multiple comparisons. Using Ingenuity Systems molecular network analysis, we identified molecular nodes suggesting that while different genetic variants associated with TOXO in the two population samples, the molecular pathways for TOXO susceptibility nevertheless converged on common pathways. Molecular nodes in these common pathways included NOTCH1, CD44, and RXRA. Prior studies show that CD44 participates in TOXO-induced immunopathology and that RXRA is instrumental in regulating T-helper immune responses. These data provide new insights into the pathophysiology of this common neurotropic parasite.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Toxoplasmose/genética , Adulto , Afro-Americanos/genética , Anticorpos Antiprotozoários/sangue , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Imunoglobulina G/sangue , Judeus/genética , Masculino , Pessoa de Meia-Idade , Toxoplasmose/sangue
8.
Arch Toxicol ; 93(3): 585-602, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30694373

RESUMO

Many medical studies aim to identify factors associated with a time to an event such as survival time or time to relapse. Often, in particular, when binary variables are considered in such studies, interactions of these variables might be the actual relevant factors for predicting, e.g., the time to recurrence of a disease. Testing all possible interactions is often not possible, so that procedures such as logic regression are required that avoid such an exhaustive search. In this article, we present an ensemble method based on logic regression that can cope with the instability of the regression models generated by logic regression. This procedure called survivalFS also provides measures for quantifying the importance of the interactions forming the logic regression models on the time to an event and for the assessment of the individual variables that take the multivariate data structure into account. In this context, we introduce a new performance measure, which is an adaptation of Harrel's concordance index. The performance of survivalFS and the proposed importance measures is evaluated in a simulation study as well as in an application to genotype data from a urinary bladder cancer study. Furthermore, we compare the performance of survivalFS and its importance measures for the individual variables with the variable importance measure used in random survival forests, a popular procedure for the analysis of survival data. These applications show that survivalFS is able to identify interactions associated with time to an event and to outperform random survival forests.

9.
Bioinformatics ; 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30500888

RESUMO

Summary: Family-based sequencing studies enable researchers to identify highly penetrant genetic variants too rare to be tested in conventional case-control studies, by studying co-segregation of variant and disease phenotype. When multiple affected subjects in a family are sequenced, the probability that a variant or a set of variants is shared identical-by-descent by some or all affected relatives provides evidence against the null hypothesis of complete absence of linkage and association. The Rare Variant Sharing software package RVS implements a suite of tools to assess association and linkage between rare genetic variants and a dichotomous disease indicator in family pedigrees. Availability and Implementation: RVS is available as open source software from the Bioconductor webpage at https://bioconductor.org/packages/release/bioc/html/RVS.html.

10.
Nat Genet ; 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30455414

RESUMO

We used a deeply sequenced dataset of 910 individuals, all of African descent, to construct a set of DNA sequences that is present in these individuals but missing from the reference human genome. We aligned 1.19 trillion reads from the 910 individuals to the reference genome (GRCh38), collected all reads that failed to align, and assembled these reads into contiguous sequences (contigs). We then compared all contigs to one another to identify a set of unique sequences representing regions of the African pan-genome missing from the reference genome. Our analysis revealed 296,485,284 bp in 125,715 distinct contigs present in the populations of African descent, demonstrating that the African pan-genome contains ~10% more DNA than the current human reference genome. Although the functional significance of nearly all of this sequence is unknown, 387 of the novel contigs fall within 315 distinct protein-coding genes, and the rest appear to be intergenic.

11.
Genet Epidemiol ; 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30246882

RESUMO

We previously demonstrated how sharing of rare variants (RVs) in distant affected relatives can be used to identify variants causing a complex and heterogeneous disease. This approach tested whether single RVs were shared by all sequenced affected family members. However, as with other study designs, joint analysis of several RVs (e.g., within genes) is sometimes required to obtain sufficient statistical power. Further, phenocopies can lead to false negatives for some causal RVs if complete sharing among affected is required. Here, we extend our methodology (Rare Variant Sharing, RVS) to address these issues. Specifically, we introduce gene-based analyses, a partial sharing test based on RV sharing probabilities for subsets of affected relatives and a haplotype-based RV definition. RVS also has the desirable feature of not requiring external estimates of variant frequency or control samples, provides functionality to assess and address violations of key assumptions, and is available as open source software for genome-wide analysis. Simulations including phenocopies, based on the families of an oral cleft study, revealed the partial and complete sharing versions of RVS achieved similar statistical power compared with alternative methods (RareIBD and the Gene-Based Segregation Test), and had superior power compared with the pedigree Variant Annotation, Analysis, and Search Tool (pVAAST) linkage statistic. In studies of multiplex cleft families, analysis of rare single nucleotide variants in the exome of 151 affected relatives from 54 families revealed no significant excess sharing in any one gene, but highlighted different patterns of sharing revealed by the complete and partial sharing tests.

12.
Bioinformatics ; 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30084993

RESUMO

Motivation: De novo copy number deletions have been implicated in many diseases, but there is no formal method to date that identifies de novo deletions in parent-offspring trios from capture-based sequencing platforms. Results: We developed Minimum Distance for Targeted Sequencing (MDTS) to fill this void. MDTS has similar sensitivity (recall), but a much lower false positive rate compared to less specific CNV callers, resulting in amuch higher positive predictive value (precision). MDTS also exhibitedmuch better scalability. Availability: MDTS is freely available as open source software from the Bioconductor repository. Supplementary information: Supplementary data are available at Bioinformatics online.

13.
Hum Mol Genet ; 27(21): 3801-3812, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060175

RESUMO

Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is substantially influenced by genetic factors. Alpha-1 antitrypsin deficiency demonstrates that rare coding variants of large effect can influence COPD susceptibility. To identify additional rare coding variants in patients with severe COPD, we conducted whole exome sequencing analysis in 2543 subjects from two family-based studies (Boston Early-Onset COPD Study and International COPD Genetics Network) and one case-control study (COPDGene). Applying a gene-based segregation test in the family-based data, we identified significant segregation of rare loss of function variants in TBC1D10A and RFPL1 (P-value < 2x10-6), but were unable to find similar variants in the case-control study. In single-variant, gene-based and pathway association analyses, we were unable to find significant findings that replicated or were significant in meta-analysis. However, we found that the top results in the two datasets were in proximity to each other in the protein-protein interaction network (P-value = 0.014), suggesting enrichment of these results for similar biological processes. A network of these association results and their neighbors was significantly enriched in the transforming growth factor beta-receptor binding and cilia-related pathways. Finally, in a more detailed examination of candidate genes, we identified individuals with putative high-risk variants, including patients harboring homozygous mutations in genes associated with cutis laxa and Niemann-Pick Disease Type C. Our results likely reflect heterogeneity of genetic risk for COPD along with limitations of statistical power and functional annotation, and highlight the potential of network analysis to gain insight into genetic association studies.

14.
Gigascience ; 7(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29762754

RESUMO

Background: Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. Findings: In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)-based high-performance computing (HPC) implementation, and the popular VCFTools. Conclusions: Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems.


Assuntos
Redes de Comunicação de Computadores , Armazenamento e Recuperação da Informação , Software , Análise por Conglomerados , Humanos , Fluxo de Trabalho
15.
Respir Res ; 19(1): 59, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29631575

RESUMO

BACKGROUND: Smoking is the principal modifiable environmental risk factor for chronic obstructive pulmonary disease (COPD) which affects 300 million people and is the 3rd leading cause of death worldwide. Most of the genetic studies of smoking have relied on self-reported smoking status which is vulnerable to reporting and recall bias. Using data from the Lung Health Study (LHS), we sought to identify genetic variants associated with quantitative smoking and cessation in individuals with mild to moderate COPD. METHODS: The LHS is a longitudinal multicenter study of mild-to-moderate COPD subjects who were all smokers at recruitment. We performed genome-wide association studies (GWASs) for salivary cotinine (n = 4024), exhaled carbon monoxide (eCO) (n = 2854), cigarettes per day (CPD) (n = 2706) and smoking cessation at year 5 follow-up (n = 717 quitters and 2175 smokers). The GWAS analyses were adjusted for age, gender, and genetic principal components. RESULTS: For cotinine levels, SNPs near UGT2B10 gene achieved genome-wide significance (i.e. P < 5 × 10- 8) with top SNP rs10023464, P = 1.27 × 10- 11. For eCO levels, one significant SNP was identified which mapped to the CHRNA3 gene (rs12914385, P = 2.38 × 10- 8). A borderline region mapping to KCNMA1 gene was associated with smoking cessation (rs207675, P = 5.95 × 10- 8). Of the identified loci, only the CHRNA3/5 locus showed significant associations with lung function but only in heavy smokers. No regions met genome-wide significance for CPD. CONCLUSION: The study demonstrates that using objective measures of smoking such as eCO and/or salivary cotinine can more precisely capture the genetic contribution to multiple aspects of smoking behaviour. The KCNMA1 gene association with smoking cessation may represent a potential therapeutic target and warrants further studies. TRIAL REGISTRATION: The Lung Health Study ClinicalTrials.gov Identifier: NCT00000568 . Date of registration: October 28, 1999.


Assuntos
Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/epidemiologia , Fumar/genética , Adulto , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Doença Pulmonar Obstrutiva Crônica/terapia , Fumar/terapia , Abandono do Hábito de Fumar/métodos
16.
Platelets ; : 1-7, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29553866

RESUMO

Coronary artery disease (CAD) remains a major cause of mortality and morbidity worldwide. The aggregation of activated platelets on a ruptured atherosclerotic plaque is a critical step in most acute cardiovascular events like myocardial infarction. Platelet aggregation both at baseline and after aspirin is highly heritable. Genome-wide association studies (GWAS) have identified a common variant within the first intron of the platelet endothelial aggregation receptor1 (PEAR1), to be robustly associated with platelet aggregation. In this study, we used targeted deep sequencing to fine-map the prior GWAS peak and identify additional rare variants of PEAR1 that account for missing heritability in platelet aggregation within the GeneSTAR families. In this study, 1709 subjects (1043 European Americans, EA and 666 African Americans, AA) from families in the GeneSTAR study were included. In vitro platelet aggregation in response to collagen, ADP and epinephrine was measured at baseline and 14 days after aspirin therapy (81 mg/day). Targeted deep sequencing of PEAR1 in addition to 2kb of upstream and downstream of the gene was performed. Under an additive genetic model, the association of single variants of PEAR1 with platelet aggregation phenotypes were examined. Additionally, we examined the association between the burden of PEAR1 rare non-synonymous variants and platelet aggregation phenotypes. Of 532 variants identified through sequencing, the intron 1 variant, rs12041331, was significantly associated with all platelet aggregation phenotypes at baseline and after platelet inhibition with aspirin therapy. rs12566888, which is in linkage disequilibrium with rs12041331, was associated with platelet aggregation phenotypes but to a lesser extent. In the EA families, the burden of PEAR1 missense variants was associated with platelet aggregation after aspirin therapy when the platelets were stimulated with epinephrine (p = 0.0009) and collagen (p = 0.03). In AAs, the burden of PEAR1 missense variants was associated, to a lesser degree, with platelet aggregation in response to epinephrine (p = 0.02) and ADP (p = 0.04). Our study confirmed that the GWAS-identified variant, rs12041331, is the strongest variant associated with platelet aggregation both at baseline and after aspirin therapy in our GeneSTAR families in both races. We identified additional association of rare missense variants in PEAR1 with platelet aggregation following aspirin therapy. However, we observed a racial difference in the contribution of these rare variants to the platelet aggregation, most likely due to higher residual missing heritability of platelet aggregation after accounting for rs12041331 in the EAs compared to AAs.

17.
Brain Behav Immun ; 70: 203-213, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29574260

RESUMO

BACKGROUND: The infections Toxoplasma gondii (T. gondii), cytomegalovirus, and Herpes Simplex Virus Type 1 (HSV1) are common persistent infections that have been associated with schizophrenia and bipolar disorder. The major histocompatibility complex (MHC, termed HLA in humans) region has been implicated in these infections and these mental illnesses. The interplay of MHC genetics, mental illness, and infection has not been systematically examined in previous research. METHODS: In a cohort of 1636 individuals, we used genome-wide association data to impute 7 HLA types (A, B, C, DRB1, DQA1, DQB1, DPB1), and combined this data with serology data for these infections. We used regression analysis to assess the association between HLA alleles, infections (individually and collectively), and mental disorder status (schizophrenia, bipolar disorder, controls). RESULTS: After Bonferroni correction for multiple comparisons, HLA C∗07:01 was associated with increased HSV1 infection among mentally healthy controls (OR 3.4, p = 0.0007) but not in the schizophrenia or bipolar groups (P > 0.05). For the multiple infection outcome, HLA B∗ 38:01 and HLA C∗12:03 were protective in the healthy controls (OR ≈ 0.4) but did not have a statistically-significant effect in the schizophrenia or bipolar groups. T. gondii had several nominally-significant positive associations, including the haplotypes HLA DRB∗03:01 ∼ HLA DQA∗05:01 ∼ HLA DQB∗02:01 and HLA B∗08:01 ∼ HLA C∗07:01. CONCLUSIONS: We identified HLA types that showed strong and significant associations with neurotropic infections. Since some of these associations depended on mental illness status, the engagement of HLA-related pathways may be altered in schizophrenia due to immunogenetic differences or exposure history.

18.
PLoS One ; 13(3): e0194610, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29590160

RESUMO

Omega-6 (n-6) and omega-3 (n-3) long (≥ 20 carbon) chain polyunsaturated fatty acids (LC-PUFAs) play a critical role in human health and disease. Biosynthesis of LC-PUFAs from dietary 18 carbon PUFAs in tissues such as the liver is highly associated with genetic variation within the fatty acid desaturase (FADS) gene cluster, containing FADS1 and FADS2 that encode the rate-limiting desaturation enzymes in the LC-PUFA biosynthesis pathway. However, the molecular mechanisms by which FADS genetic variants affect LC-PUFA biosynthesis, and in which tissues, are unclear. The current study examined associations between common single nucleotide polymorphisms (SNPs) within the FADS gene cluster and FADS1 and FADS2 gene expression in 44 different human tissues (sample sizes ranging 70-361) from the Genotype-Tissue Expression (GTEx) Project. FADS1 and FADS2 expression were detected in all 44 tissues. Significant cis-eQTLs (within 1 megabase of each gene, False Discovery Rate, FDR<0.05, as defined by GTEx) were identified in 12 tissues for FADS1 gene expression and 23 tissues for FADS2 gene expression. Six tissues had significant (FDR< 0.05) eQTLs associated with both FADS1 and FADS2 (including artery, esophagus, heart, muscle, nerve, and thyroid). Interestingly, the identified eQTLs were consistently found to be associated in opposite directions for FADS1 and FADS2 expression. Taken together, findings from this study suggest common SNPs within the FADS gene cluster impact the transcription of FADS1 and FADS2 in numerous tissues and raise important questions about how the inverse expression of these two genes impact intermediate molecular (such a LC-PUFA and LC-PUFA-containing glycerolipid levels) and ultimately clinical phenotypes associated with inflammatory diseases and brain health.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/metabolismo , Família Multigênica , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Regulação da Expressão Gênica , Genótipo , Humanos
19.
Eur Respir J ; 50(5)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29191953

RESUMO

Surfactant protein D (SP-D) is produced primarily in the lung and is involved in regulating pulmonary surfactants, lipid homeostasis and innate immunity. Circulating SP-D levels in blood are associated with chronic obstructive pulmonary disease (COPD), although causality remains elusive.In 4061 subjects with COPD, we identified genetic variants associated with serum SP-D levels. We then determined whether these variants affected lung tissue gene expression in 1037 individuals. A Mendelian randomisation framework was then applied, whereby serum SP-D-associated variants were tested for association with COPD risk in 11 157 cases and 36 699 controls and with 11 years decline of lung function in the 4061 individuals.Three regions on chromosomes 6 (human leukocyte antigen region), 10 (SFTPD gene) and 16 (ATP2C2 gene) were associated with serum SP-D levels at genome-wide significance. In Mendelian randomisation analyses, variants associated with increased serum SP-D levels decreased the risk of COPD (estimate -0.19, p=6.46×10-03) and slowed the lung function decline (estimate=0.0038, p=7.68×10-3).Leveraging genetic variation effect on protein, lung gene expression and disease phenotypes provided novel insights into SP-D biology and established a causal link between increased SP-D levels and protection against COPD risk and progression. SP-D represents a very promising biomarker and therapeutic target for COPD.


Assuntos
Análise da Randomização Mendeliana , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/genética , Proteína D Associada a Surfactante Pulmonar/sangue , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Modelos Lineares , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco
20.
PLoS One ; 12(9): e0180903, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957329

RESUMO

Genetic variants near and within the fatty acid desaturase (FADS) cluster are associated with polyunsaturated fatty acid (PUFA) biosynthesis, levels of several disease biomarkers and risk of human disease. However, determining the functional mechanisms by which these genetic variants impact PUFA levels remains a challenge. Utilizing an Illumina 450K array, we previously reported strong allele-specific methylation (ASM) associations (p = 2.69×10-29) between a single nucleotide polymorphism (SNP) rs174537 and DNA methylation of CpG sites located in the putative enhancer region between FADS1 and FADS2, in human liver tissue. However, this array only featured 20 CpG sites within this 12kb region. To better understand the methylation landscape within this region, we conducted bisulfite sequencing of the region between FADS1 and FADS2. Liver tissues from 50 male subjects (27 European Americans, 23 African Americans) were obtained from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, and used to ascertain the genotype at rs174537 and methylation status across the region of interest. Associations between rs174537 genotype and methylation status of 136 CpG sites were determined. Age-adjusted linear regressions were used to assess ASM associations with rs174537 genotype. The majority of CpG sites (117 out of 136, 86%) exhibited high levels of methylation with the greatest variability observed at three key regulatory regions-the promoter regions for FADS1 and FADS2 and a putative enhancer site between the two genes. Eight CpG sites within the putative enhancer region displayed significant (FDR p <0.05) ASM associations with rs174537. These data support the concept that both genetic and epigenetic factors regulate PUFA biosynthesis, and raise fundamental questions as to how genetic variants such as rs174537 impact DNA methylation in distant regulatory regions, and ultimately the capacity of tissues to synthesize PUFAs.


Assuntos
Metilação de DNA/genética , Ácidos Graxos Dessaturases/genética , Família Multigênica , Sequências Reguladoras de Ácido Nucleico/genética , Adulto , Afro-Americanos/genética , Ilhas de CpG/genética , Demografia , Grupo com Ancestrais do Continente Europeu/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA