Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Nat Genet ; 51(4): 659-674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30911161

RESUMO

Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.


Assuntos
Encéfalo/fisiopatologia , Expressão Gênica/genética , Esquizofrenia/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Risco , Transcriptoma/genética
4.
Mol Psychiatry ; 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610202

RESUMO

Suicide accounts for nearly 800,000 deaths per year worldwide with rates of both deaths and attempts rising. Family studies have estimated substantial heritability of suicidal behavior; however, collecting the sample sizes necessary for successful genetic studies has remained a challenge. We utilized two different approaches in independent datasets to characterize the contribution of common genetic variation to suicide attempt. The first is a patient reported suicide attempt phenotype asked as part of an online mental health survey taken by a subset of participants (n = 157,366) in the UK Biobank. After quality control, we leveraged a genotyped set of unrelated, white British ancestry participants including 2433 cases and 334,766 controls that included those that did not participate in the survey or were not explicitly asked about attempting suicide. The second leveraged electronic health record (EHR) data from the Vanderbilt University Medical Center (VUMC, 2.8 million patients, 3250 cases) and machine learning to derive probabilities of attempting suicide in 24,546 genotyped patients. We identified significant and comparable heritability estimates of suicide attempt from both the patient reported phenotype in the UK Biobank (h2SNP = 0.035, p = 7.12 × 10-4) and the clinically predicted phenotype from VUMC (h2SNP = 0.046, p = 1.51 × 10-2). A significant genetic overlap was demonstrated between the two measures of suicide attempt in these independent samples through polygenic risk score analysis (t = 4.02, p = 5.75 × 10-5) and genetic correlation (rg = 1.073, SE = 0.36, p = 0.003). Finally, we show significant but incomplete genetic correlation of suicide attempt with insomnia (rg = 0.34-0.81) as well as several psychiatric disorders (rg = 0.26-0.79). This work demonstrates the contribution of common genetic variation to suicide attempt. It points to a genetic underpinning to clinically predicted risk of attempting suicide that is similar to the genetic profile from a patient reported outcome. Lastly, it presents an approach for using EHR data and clinical prediction to generate quantitative measures from binary phenotypes that can improve power for genetic studies.

5.
Biol Psychiatry ; 86(2): 110-119, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30686506

RESUMO

BACKGROUND: Genetic risk for bipolar disorder (BD) is conferred through many common alleles, while a role for rare copy number variants (CNVs) is less clear. Subtypes of BD including schizoaffective disorder bipolar type (SAB), bipolar I disorder (BD I), and bipolar II disorder (BD II) differ according to the prominence and timing of psychosis, mania, and depression. The genetic factors contributing to the combination of symptoms among these subtypes are poorly understood. METHODS: Rare large CNVs were analyzed in 6353 BD cases (3833 BD I [2676 with psychosis, 850 without psychosis, and 307 with unknown psychosis history], 1436 BD II, 579 SAB, and 505 BD not otherwise specified) and 8656 controls. CNV burden and a polygenic risk score (PRS) for schizophrenia were used to evaluate the relative contributions of rare and common variants to risk of BD, BD subtypes, and psychosis. RESULTS: CNV burden did not differ between BD and controls when treated as a single diagnostic entity. However, burden in SAB was increased relative to controls (p = .001), BD I (p = .0003), and BD II (p = .0007). Burden and schizophrenia PRSs were increased in SAB compared with BD I with psychosis (CNV p = .0007, PRS p = .004), and BD I without psychosis (CNV p = .0004, PRS p = 3.9 × 10-5). Within BD I, psychosis was associated with increased schizophrenia PRSs (p = .005) but not CNV burden. CONCLUSIONS: CNV burden in BD is limited to SAB. Rare and common genetic variants may contribute differently to risk for psychosis and perhaps other classes of psychiatric symptoms.

6.
AMIA Jt Summits Transl Sci Proc ; 2017: 237-246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29888080

RESUMO

Drug repositioning for available medications can be preferred over traditional drug development, which requires substantially more effort to uncover new insights into medications and diseases. Genome-Wide Association Studies (GWAS) and Phenome-Wide Association Studies (PheWAS) are two complimentary methods for finding novel associations between genes and diseases. We hypothesize that discoveries from these studies could be leveraged to find new targets for existing drugs. Thus, we propose a framework to learn opportunities for inferring such relationships via overlapped genes between disease-associated genes (e.g. GWAS and PheWAS findings) and drugtargeted genes. We use drug indications found in Medication Indication Resource (MEDI) as a gold standard to evaluate if drug indications learned from GWAS and PheWAS findings have clinical indications. We examined 151,011 pairs from 987 drugs across 153 diseases and 763 pairs were statistically significant. Out of these 763 pairs, 16 of them were found to have clinical indications.

7.
Am J Hum Genet ; 102(6): 1169-1184, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29805045

RESUMO

Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with expression quantitative trait loci (eQTL) and determining which variants underlie both GWAS and eQTL signals. Most analyses, however, consider only the marginal eQTL signal, rather than dissect this signal into multiple conditionally independent signals for each gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts, leads to improved fine mapping of GWAS associations. Using genotypes and gene expression levels from post-mortem human brain samples (n = 467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with context-specific (e.g., tissue-, cell type-, or developmental time point-specific) regulation of gene expression. Integrating the 2014 Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC primary and conditional eQTL data reveals 40 loci with strong evidence for co-localization (posterior probability > 0.8), including six loci with co-localization of conditional eQTL. Our co-localization analyses support previously reported genes, identify novel genes associated with schizophrenia risk, and provide specific hypotheses for their functional follow-up.

8.
Transl Psychiatry ; 8(1): 86, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29666432

RESUMO

Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and depression. Although genomewide association studies (GWAS) have successfully identified genetic loci contributing to BD risk, sample size has become a rate-limiting obstacle to genetic discovery. Electronic health records (EHRs) represent a vast but relatively untapped resource for high-throughput phenotyping. As part of the International Cohort Collection for Bipolar Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD against in-person diagnostic interviews (Castro et al. Am J Psychiatry 172:363-372, 2015). Here, we establish the genetic validity of these phenotypes by determining their genetic correlation with traditionally ascertained samples. Case and control algorithms were derived from structured and narrative text in the Partners Healthcare system comprising more than 4.6 million patients over 20 years. Genomewide genotype data for 3330 BD cases and 3952 controls of European ancestry were used to estimate SNP-based heritability (h2g) and genetic correlation (rg) between EHR-based phenotype definitions and traditionally ascertained BD cases in GWAS by the ICCBD and Psychiatric Genomics Consortium (PGC) using LD score regression. We evaluated BD cases identified using 4 EHR-based algorithms: an NLP-based algorithm (95-NLP) and three rule-based algorithms using codified EHR with decreasing levels of stringency-"coded-strict", "coded-broad", and "coded-broad based on a single clinical encounter" (coded-broad-SV). The analytic sample comprised 862 95-NLP, 1968 coded-strict, 2581 coded-broad, 408 coded-broad-SV BD cases, and 3 952 controls. The estimated h2g were 0.24 (p = 0.015), 0.09 (p = 0.064), 0.13 (p = 0.003), 0.00 (p = 0.591) for 95-NLP, coded-strict, coded-broad and coded-broad-SV BD, respectively. The h2g for all EHR-based cases combined except coded-broad-SV (excluded due to 0 h2g) was 0.12 (p = 0.004). These h2g were lower or similar to the h2g observed by the ICCBD + PGCBD (0.23, p = 3.17E-80, total N = 33,181). However, the rg between ICCBD + PGCBD and the EHR-based cases were high for 95-NLP (0.66, p = 3.69 × 10-5), coded-strict (1.00, p = 2.40 × 10-4), and coded-broad (0.74, p = 8.11 × 10-7). The rg between EHR-based BD definitions ranged from 0.90 to 0.98. These results provide the first genetic validation of automated EHR-based phenotyping for BD and suggest that this approach identifies cases that are highly genetically correlated with those ascertained through conventional methods. High throughput phenotyping using the large data resources available in EHRs represents a viable method for accelerating psychiatric genetic research.

9.
Nat Commun ; 9(1): 989, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515099

RESUMO

Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7% for height to 47% for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait.

10.
Nat Genet ; 50(3): 381-389, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29483656

RESUMO

Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide insights. We report a new genome-wide association study of schizophrenia (11,260 cases and 24,542 controls), and through meta-analysis with existing data we identify 50 novel associated loci and 145 loci in total. Through integrating genomic fine-mapping with brain expression and chromosome conformation data, we identify candidate causal genes within 33 loci. We also show for the first time that the common variant association signal is highly enriched among genes that are under strong selective pressures. These findings provide new insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation-intolerant genes and suggest a mechanism by which common risk variants persist in the population.

11.
Genome Med ; 9(1): 114, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29262854

RESUMO

BACKGROUND: Integrating rare variation from trio family and case-control studies has successfully implicated specific genes contributing to risk of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASD), intellectual disability (ID), developmental disorders (DDs), and epilepsy (EPI). For schizophrenia (SCZ), however, while sets of genes have been implicated through the study of rare variation, only two risk genes have been identified. METHODS: We used hierarchical Bayesian modeling of rare-variant genetic architecture to estimate mean effect sizes and risk-gene proportions, analyzing the largest available collection of whole exome sequence data for SCZ (1,077 trios, 6,699 cases, and 13,028 controls), and data for four NDDs (ASD, ID, DD, and EPI; total 10,792 trios, and 4,058 cases and controls). RESULTS: For SCZ, we estimate there are 1,551 risk genes. There are more risk genes and they have weaker effects than for NDDs. We provide power analyses to predict the number of risk-gene discoveries as more data become available. We confirm and augment prior risk gene and gene set enrichment results for SCZ and NDDs. In particular, we detected 98 new DD risk genes at FDR < 0.05. Correlations of risk-gene posterior probabilities are high across four NDDs (ρ>0.55), but low between SCZ and the NDDs (ρ<0.3). An in-depth analysis of 288 NDD genes shows there is highly significant protein-protein interaction (PPI) network connectivity, and functionally distinct PPI subnetworks based on pathway enrichment, single-cell RNA-seq cell types, and multi-region developmental brain RNA-seq. CONCLUSIONS: We have extended a pipeline used in ASD studies and applied it to infer rare genetic parameters for SCZ and four NDDs ( https://github.com/hoangtn/extTADA ). We find many new DD risk genes, supported by gene set enrichment and PPI network connectivity analyses. We find greater similarity among NDDs than between NDDs and SCZ. NDD gene subnetworks are implicated in postnatally expressed presynaptic and postsynaptic genes, and for transcriptional and post-transcriptional gene regulation in prenatal neural progenitor and stem cells.


Assuntos
Éxons , Estudo de Associação Genômica Ampla/métodos , Transtornos do Neurodesenvolvimento/genética , Polimorfismo Genético , Esquizofrenia/genética , Teorema de Bayes , Loci Gênicos , Humanos , Modelos Genéticos , Mutação , Mapas de Interação de Proteínas
12.
Nat Commun ; 8(1): 2225, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263384

RESUMO

The power of human induced pluripotent stem cell (hiPSC)-based studies to resolve the smaller effects of common variants within the size of cohorts that can be realistically assembled remains uncertain. We identified and accounted for a variety of technical and biological sources of variation in a large case/control schizophrenia (SZ) hiPSC-derived cohort of neural progenitor cells and neurons. Reducing the stochastic effects of the differentiation process by correcting for cell type composition boosted the SZ signal and increased the concordance with post-mortem data sets. We predict a growing convergence between hiPSC and post-mortem studies as both approaches expand to larger cohort sizes. For studies of complex genetic disorders, to maximize the power of hiPSC cohorts currently feasible, in most cases and whenever possible, we recommend expanding the number of individuals even at the expense of the number of replicate hiPSC clones.


Assuntos
Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Esquizofrenia/genética , Adolescente , Adulto , Antígenos de Superfície/genética , Autopsia , Estudos de Casos e Controles , Criança , Variações do Número de Cópias de DNA , Feminino , Humanos , Modelos Lineares , Masculino , Proteína Homeobox Nanog/genética , Nestina/genética , Fator 3 de Transcrição de Octâmero/genética , Proteoglicanas/genética , Fatores de Transcrição SOXB1/genética , Análise de Sequência de RNA , Antígenos Embrionários Estágio-Específicos/genética , Sinapsinas/genética , Transcriptoma , Adulto Jovem
14.
Nucleic Acids Res ; 45(D1): D840-D845, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899611

RESUMO

Worldwide, hundreds of thousands of humans have had their genomes or exomes sequenced, and access to the resulting data sets can provide valuable information for variant interpretation and understanding gene function. Here, we present a lightweight, flexible browser framework to display large population datasets of genetic variation. We demonstrate its use for exome sequence data from 60 706 individuals in the Exome Aggregation Consortium (ExAC). The ExAC browser provides gene- and transcript-centric displays of variation, a critical view for clinical applications. Additionally, we provide a variant display, which includes population frequency and functional annotation data as well as short read support for the called variant. This browser is open-source, freely available at http://exac.broadinstitute.org, and has already been used extensively by clinical laboratories worldwide.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Exoma , Genômica/métodos , Navegador , Estudo de Associação Genômica Ampla/métodos , Humanos , Software , Interface Usuário-Computador
15.
Nat Neurosci ; 19(11): 1433-1441, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27694994

RESUMO

By analyzing the exomes of 12,332 unrelated Swedish individuals, including 4,877 individuals affected with schizophrenia, in ways informed by exome sequences from 45,376 other individuals, we identified 244,246 coding-sequence and splice-site ultra-rare variants (URVs) that were unique to individual Swedes. We found that gene-disruptive and putatively protein-damaging URVs (but not synonymous URVs) were more abundant among individuals with schizophrenia than among controls (P = 1.3 × 10-10). This elevation of protein-compromising URVs was several times larger than an analogously elevated rate for de novo mutations, suggesting that most rare-variant effects on schizophrenia risk are inherited. Among individuals with schizophrenia, the elevated frequency of protein-compromising URVs was concentrated in brain-expressed genes, particularly in neuronally expressed genes; most of this elevation arose from large sets of genes whose RNAs have been found to interact with synaptically localized proteins. Our results suggest that synaptic dysfunction may mediate a large fraction of strong, individually rare genetic influences on schizophrenia risk.


Assuntos
Exoma/genética , Predisposição Genética para Doença , Esquizofrenia/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Mutação/genética , Proteínas do Tecido Nervoso/genética , Risco , Suécia
16.
PLoS Genet ; 12(10): e1006343, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27792727

RESUMO

It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (ß = 16.1, CI(ß) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (ß = 4.86,CI(ß) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest.


Assuntos
Consanguinidade , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Feminino , Genoma Humano , Genômica , Homozigoto , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Esquizofrenia/epidemiologia , Esquizofrenia/patologia
17.
Nat Neurosci ; 19(11): 1442-1453, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27668389

RESUMO

Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.


Assuntos
Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Herança Multifatorial/genética , Esquizofrenia/genética , Encéfalo/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Risco
18.
Nature ; 536(7616): 285-91, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535533

RESUMO

Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.


Assuntos
Exoma/genética , Variação Genética/genética , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Humanos , Fenótipo , Proteoma/genética , Doenças Raras/genética , Tamanho da Amostra
20.
Nat Genet ; 48(10): 1107-11, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27533299

RESUMO

Copy number variation (CNV) affecting protein-coding genes contributes substantially to human diversity and disease. Here we characterized the rates and properties of rare genic CNVs (<0.5% frequency) in exome sequencing data from nearly 60,000 individuals in the Exome Aggregation Consortium (ExAC) database. On average, individuals possessed 0.81 deleted and 1.75 duplicated genes, and most (70%) carried at least one rare genic CNV. For every gene, we empirically estimated an index of relative intolerance to CNVs that demonstrated moderate correlation with measures of genic constraint based on single-nucleotide variation (SNV) and was independently correlated with measures of evolutionary conservation. For individuals with schizophrenia, genes affected by CNVs were more intolerant than in controls. The ExAC CNV data constitute a critical component of an integrated database spanning the spectrum of human genetic variation, aiding in the interpretation of personal genomes as well as population-based disease studies. These data are freely available for download and visualization online.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Predisposição Genética para Doença , Adulto , Criança , Bases de Dados Genéticas , Feminino , Frequência do Gene , Genoma Humano , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA