Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4920, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664034

RESUMO

Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involved.

2.
Nat Commun ; 10(1): 4919, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664039

RESUMO

Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.

3.
Epileptic Disord ; 21(S1): 41-47, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31149903

RESUMO

Formerly idiopathic, focal epilepsies (IFE) are self-limiting, "age-related" diseases that mainly occur during critical developmental periods. Childhood epilepsy with centrotemporal spikes, or Rolandic epilepsy (RE), is the most frequent form of IFE. Together with the Landau-Kleffner syndrome and the epileptic Encephalopathy related to Status Epilepticus during slow Sleep syndrome (ESES), RE is part of a single and continuous spectrum of childhood epilepsies and epileptic encephalopathies with acquired cognitive, behavioral and speech and/or language impairment, known as the epilepsy-aphasia spectrum (EAS). The pathophysiology has long been attributed to an elusive and complex interplay between brain development and maturation processes on the one hand, and susceptibility genes on the other hand. Studies based on the variable combination of molecular cytogenetics, Sanger and next-generation sequencing tools, and functional assays have led to the identification and validation of genetic mutations in the GRIN2A gene that can directly cause various types of EAS disorders. The recent identification of GRIN2A defects in EAS represents a first and major break-through in our understanding of the underlying pathophysiological mechanisms. In this review, we describe the current knowledge on the genetic architecture of IFE.

4.
Nat Commun ; 10(1): 2129, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086189

RESUMO

De novo heterozygous missense variants in the γ-tubulin gene TUBG1 have been linked to human malformations of cortical development associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning, disrupting the locomotion of new-born neurons but without affecting progenitors' proliferation. We further demonstrate that pathogenic TUBG1 variants are linked to reduced microtubule dynamics but without major structural nor functional centrosome defects in subject-derived fibroblasts. Additionally, we developed a knock-in Tubg1Y92C/+ mouse model and assessed consequences of the mutation. Although centrosomal positioning in bipolar neurons is correct, they fail to initiate locomotion. Furthermore, Tubg1Y92C/+ animals show neuroanatomical and behavioral defects and increased epileptic cortical activity. We show that Tubg1Y92C/+ mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of cortical malformations.


Assuntos
Malformações do Desenvolvimento Cortical/genética , Microtúbulos/metabolismo , Neurogênese/genética , Neurônios/fisiologia , Tubulina (Proteína)/genética , Animais , Comportamento Animal , Movimento Celular/genética , Centrossomo/metabolismo , Córtex Cerebral/anormalidades , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Modelos Animais de Doenças , Embrião de Mamíferos , Epilepsia/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Técnicas de Introdução de Genes , Predisposição Genética para Doença , Células HeLa , Humanos , Microscopia Intravital , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Microtúbulos/genética , Mutação de Sentido Incorreto
5.
Brain ; 142(1): 80-92, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544257

RESUMO

Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders.


Assuntos
Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Córtex Cerebelar/metabolismo , Criança , Pré-Escolar , Epilepsia/fisiopatologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Adulto Jovem
7.
Genet Med ; 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093711

RESUMO

PURPOSE: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. RESULTS: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. CONCLUSION: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.

9.
JAMA Neurol ; 75(10): 1234-1245, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29913018

RESUMO

Importance: Movement disorders are characterized by a marked genotypic and phenotypic heterogeneity, complicating diagnostic work in clinical practice and molecular diagnosis. Objective: To develop and evaluate a targeted sequencing approach using a customized panel of genes involved in movement disorders. Design, Setting and Participants: We selected 127 genes associated with movement disorders to create a customized enrichment in solution capture array. Targeted high-coverage sequencing was applied to DNA samples taken from 378 eligible patients at 1 Luxembourgian, 1 Algerian, and 25 French tertiary movement disorder centers between September 2014 and July 2016. Patients were suspected of having inherited movement disorders because of early onset, family history, and/or complex phenotypes. They were divided in 5 main movement disorder groups: parkinsonism, dystonia, chorea, paroxysmal movement disorder, and myoclonus. To compare approaches, 23 additional patients suspected of having inherited cerebellar ataxia were included, on whom whole-exome sequencing (WES) was done. Data analysis occurred from November 2015 to October 2016. Main Outcomes and Measures: Percentages of individuals with positive diagnosis, variants of unknown significance, and negative cases; mutational frequencies and clinical phenotyping of genes associated with movement disorders. Results: Of the 378 patients (of whom 208 were male [55.0%]), and with a median (range) age at disease onset of 31 (0-84) years, probable pathogenic variants were identified in 83 cases (22.0%): 46 patients with parkinsonism (55% of 83 patients), 21 patients (25.3%) with dystonia, 7 patients (8.4%) with chorea, 7 patients (8.4%) with paroxysmal movement disorders, and 2 patients (2.4%) with myoclonus as the predominant phenotype. Some genes were mutated in several cases in the cohort. Patients with pathogenic variants were significantly younger (median age, 27 years; interquartile range [IQR], 5-36 years]) than the patients without diagnosis (median age, 35 years; IQR, 15-46 years; P = .04). Diagnostic yield was significantly lower in patients with dystonia (21 of 135; 15.6%; P = .03) than in the overall cohort. Unexpected genotype-phenotype correlations in patients with pathogenic variants deviating from the classic phenotype were highlighted, and 49 novel probable pathogenic variants were identified. The WES analysis of the cohort of 23 patients with cerebellar ataxia led to an overall diagnostic yield of 26%, similar to panel analysis but at a cost 6 to 7 times greater. Conclusions and Relevance: High-coverage sequencing panel for the delineation of genes associated with movement disorders was efficient and provided a cost-effective diagnostic alternative to whole-exome and whole-genome sequencing.

10.
Epileptic Disord ; 19(3): 345-350, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28832001

RESUMO

Epileptic encephalopathies with continuous spike-and-waves during sleep (CSWS) are characterized by cognitive or language impairment, and are occasionally associated with pathogenic variants of the GRIN2A gene. In these disorders, speech dysfunction could be either related to cerebral dysfunction caused by the GRIN2A deleterious variant or intense interictal epileptic activity. Here, we present a patient with apraxia of speech, clearly linked to severity of epilepsy, carrying a GRIN2A variant. A 6-year-old boy developed acute regression of expressive language following epileptic seizures, leading to complete mutism, at which time EEG revealed CSWS. MEG showed bilateral superior parietal and opercular independent CSWS onsets and PET with fluorodeoxyglucose demonstrated significant increase in relative glucose metabolism in bilateral superior parietal regions. Corticosteroids induced a regression of CSWS together with impressive improvement in speech abilities. This case supports the hypothesis of a triggering role for epileptic discharges in speech deterioration observed in children carrying a deleterious variant of GRIN2A. When classic antiepileptic drugs fail to control epileptic activity, corticosteroids should be considered. Multimodal functional neuroimaging suggests a role for opercular and superior parietal areas in acquired epileptic opercular syndrome. [Published with video sequences on www.epilepticdisorders.com].


Assuntos
Encéfalo/fisiopatologia , Epilepsia do Lobo Frontal/genética , Receptores de N-Metil-D-Aspartato/genética , Criança , Eletroencefalografia , Epilepsia do Lobo Frontal/fisiopatologia , Humanos , Masculino
11.
BMC Neurol ; 16(1): 238, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881096

RESUMO

BACKGROUND: Essential tremor (ET) is characterized by a frequent family history. No monogenic form of ET has been identified. We aimed at exploring ET patients to identify distinct subgroups and facilitate the identification of ET genes. We tested for the presence of HTRA2 p.G399S, and ANO3 p. W490C, p. R484 W and p. S685G mutations. METHODS: Between June 2011 and November 2013, all consecutive patients suspected with ET were prospectively included in a prospective, monocentric study. Family history, age at onset (AAO), features of tremor, benefit of alcohol and drugs, electrophysiological recording findings were collected. Sanger sequencing was performed for HTRA2 and ANO3 mutations screening. RESULTS: Sixty eight patients were investigated. Fourteen diagnosed with psychogenic (5) or dystonic tremor (9) were excluded. Regarding the 54 ET patients, mean AAO was 48 years (6-77), and mean disease duration 15 years (1-55). Bimodal distribution of AAO was consistent with phenotypic subgroups. In patients with AAO before 30 years, marked benefit of alcohol (p < 0.01) and ET family history (p < 0.01) were more frequent and the disease progression less severe (p < 0.0001). Neither HTRA2 nor ANO3 mutation were identified in our patients. CONCLUSIONS: Our data support that distinct ET phenotypic subgroups may be encountered. We recommend to study separately extreme phenotypes of ET, particularly autosomal dominant families with early AAO (<30 years) and marked benefit of alcohol, to facilitate the identification of ET genes. Electromyographic recording remains a support to distinguish ET from differential diagnosis. HTRA2 and ANO3 mutations are not common causes of ET.


Assuntos
Distúrbios Distônicos/genética , Tremor Essencial/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Anoctaminas , Canais de Cloreto/genética , Feminino , Estudos de Associação Genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Mutação , Estudos Prospectivos , Serina Endopeptidases/genética , Adulto Jovem
12.
J Neuromuscul Dis ; 3(2): 275-281, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27854214

RESUMO

Most myotilinopathy patients present with a dominant late onset distal phenotype and myofibrillar pathology, although the first MYOT mutation in a family reported to have LGMD phenotype. We report here a French family affected with a late onset proximal and distal muscle weakness and myofibrillar myopathy on muscle pathology, in which the siblings known to be clinically affected were homozygous for the c.179C>T (p.Ser60Phe) myotilin gene mutation. One subjectively asymptomatic member of the family was heterozygous for this mutation. This is the first report of a family with patients being homozygous for a known dominant MYOT mutation. Dominant negative mutations are generally considered not to cause a more severe disease in homozygosity, but our data clearly demonstrate the existence of dominant MYOT mutations with a possible dose effect causing a more severe disease phenotype in homozygosity in the spectrum of myofibrillar myopathies (MFM).


Assuntos
Conectina/genética , Homozigoto , Distrofias Musculares/genética , Miopatias Congênitas Estruturais/genética , Adulto , Idoso , Eletromiografia , Feminino , Humanos , Imagem por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares/diagnóstico por imagem , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Mutação , Miopatias Congênitas Estruturais/diagnóstico por imagem , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Linhagem , Índice de Gravidade de Doença , Irmãos
13.
Nat Genet ; 48(11): 1349-1358, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27694961

RESUMO

Neurodevelopmental disorders with periventricular nodular heterotopia (PNH) are etiologically heterogeneous, and their genetic causes remain in many cases unknown. Here we show that missense mutations in NEDD4L mapping to the HECT domain of the encoded E3 ubiquitin ligase lead to PNH associated with toe syndactyly, cleft palate and neurodevelopmental delay. Cellular and expression data showed sensitivity of PNH-associated mutants to proteasome degradation. Moreover, an in utero electroporation approach showed that PNH-related mutants and excess wild-type NEDD4L affect neurogenesis, neuronal positioning and terminal translocation. Further investigations, including rapamycin-based experiments, found differential deregulation of pathways involved. Excess wild-type NEDD4L leads to disruption of Dab1 and mTORC1 pathways, while PNH-related mutations are associated with deregulation of mTORC1 and AKT activities. Altogether, these data provide insights into the critical role of NEDD4L in the regulation of mTOR pathways and their contributions in cortical development.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação de Sentido Incorreto , Heterotopia Nodular Periventricular/genética , Ubiquitina-Proteína Ligases/genética , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Domínios Proteicos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina/metabolismo
14.
Epileptic Disord ; 18(3): 252-88, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27435520

RESUMO

The term idiopathic focal epilepsies of childhood (IFE) is not formally recognised by the ILAE in its 2010 revision (Berg et al., 2010), nor are its members and boundaries precisely delineated. The IFEs are amongst the most commonly encountered epilepsy syndromes affecting children. They are fascinating disorders that hold many "treats" for both clinicians and researchers. For example, the IFEs pose many of the most interesting questions central to epileptology: how are functional brain networks involved in the manifestation of epilepsy? What are the shared mechanisms of comorbidity between epilepsy and neurodevelopmental disorders? How do focal EEG discharges impact cognitive functioning? What explains the age-related expression of these syndromes? Why are EEG discharges and seizures so tightly locked to slow-wave sleep? In the last few decades, the clinical symptomatology and the respective courses of many IFEs have been described, although they are still not widely appreciated beyond the specialist community. Most neurologists would recognise the core syndromes of IFE to comprise: benign epilepsy of childhood with centro-temporal spikes or Rolandic epilepsy (BECTS/RE); Panayiotopoulos syndrome; and the idiopathic occipital epilepsies (Gastaut and photosensitive types). The Landau-Kleffner syndrome and the related (idiopathic) epilepsy with continuous spikes and waves in sleep (CSWS or ESES) are also often included, both as a consequence of the shared morphology of the interictal discharges and their potential evolution from core syndromes, for example, CSWS from BECTS. Atypical benign focal epilepsy of childhood also has shared electro-clinical features warranting inclusion. In addition, a number of less well-defined syndromes of IFE have been proposed, including benign childhood seizures with affective symptoms, benign childhood epilepsy with parietal spikes, benign childhood seizures with frontal or midline spikes, and benign focal seizures of adolescence. The term "benign" is often used in connection with the IFEs and is increasingly being challenged. Certainly most of these disorders are not associated with the devastating cognitive and behavioural problems seen with early childhood epileptic encephalopathies, such as West or Dravet syndromes. However, it is clear that specific, and sometimes persistent, neuropsychological deficits in attention, language and literacy accompany many of the IFEs that, when multiplied by the large numbers affected, make up a significant public health problem. Understanding the nature, distribution, evolution, risk and management of these is an important area of current research. A corollary to such questions regarding comorbidities is the role of focal interictal spikes and their enduring impact on cognitive functioning. What explains the paradox that epilepsies characterised by abundant interictal epileptiform abnormalities are often associated with very few clinical seizures? This is an exciting area in both clinical and experimental arenas and will eventually have important implications for clinical management of the whole child, taking into account not just seizures, but also adaptive functioning and quality of life. For several decades, we have accepted an evidence-free approach to using or not using antiepileptic drugs in IFEs. There is huge international variation and only a handful of studies examining neurocognitive outcomes. Clearly, this is a situation ready for an overhaul in practice. Fundamental to understanding treatment is knowledge of aetiology. In recent years, there have been several significant discoveries in IFEs from studies of copy number variation, exome sequencing, and linkage that prompt reconsideration of the "unknown cause" classification and strongly suggest a genetic aetiology. The IFE are strongly age-related, both with regards to age of seizure onset and remission. Does this time window solely relate to a similar age-related gene expression, or are there epigenetic factors involved that might also explain low observed twin concordance? The genetic (and epigenetic) models for different IFEs, their comorbidities, and their similarities to other neurodevelopmental disorders deserve investigation in the coming years. In so doing, we will probably learn much about normal brain functioning. This is because these disorders, perhaps more than any other human brain disease, are disorders of functional brain systems (even though these functional networks may not yet be fully defined). In June 2012, an international group of clinical and basic science researchers met in London under the auspices of the Waterloo Foundation to discuss and debate these issues in relation to IFEs. This Waterloo Foundation Symposium on the Idiopathic Focal Epilepsies: Phenotype to Genotype witnessed presentations that explored the clinical phenomenology, phenotypes and endophenotypes, and genetic approaches to investigation of these disorders. In parallel, the impact of these epilepsies on children and their families was reviewed. The papers in this supplement are based upon these presentations. They represent an updated state-of-the-art thinking on the topics explored. The symposium led to the formation of international working groups under the umbrella of "Luke's Idiopathic Focal Epilepsy Project" to investigate various aspects of the idiopathic focal epilepsies including: semiology and classification, genetics, cognition, sleep, high-frequency oscillations, and parental resources (see www.childhood-epilepsy.org). The next sponsored international workshop, in June 2014, was on randomised controlled trials in IFEs and overnight learning outcome measures.


Assuntos
Epilepsias Parciais/fisiopatologia , Criança , Humanos
15.
Hum Genet ; 135(10): 1117-25, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27368338

RESUMO

Familial adult myoclonus epilepsy (FAME) is a rare autosomal dominant disorder characterized by adult onset, involuntary muscle jerks, cortical myoclonus and occasional seizures. FAME is genetically heterogeneous with more than 70 families reported worldwide and five potential disease loci. The efforts to identify potential causal variants have been unsuccessful in all but three families. To date, linkage analysis has been the main approach to find and narrow FAME critical regions. We propose an alternative method, pedigree free identity-by-descent (IBD) mapping, that infers regions of the genome between individuals that have been inherited from a common ancestor. IBD mapping provides an alternative to linkage analysis in the presence of allelic and locus heterogeneity by detecting clusters of individuals who share a common allele. Succeeding IBD mapping, gene prioritization based on gene co-expression analysis can be used to identify the most promising candidate genes. We performed an IBD analysis using high-density single nucleotide polymorphism (SNP) array data followed by gene prioritization on a FAME cohort of ten European families and one Australian/New Zealander family; eight of which had known disease loci. By identifying IBD regions common to multiple families, we were able to narrow the FAME2 locus to a 9.78 megabase interval within 2p11.2-q11.2. We provide additional evidence of a founder effect in four Italian families and allelic heterogeneity with at least four distinct founders responsible for FAME at the FAME2 locus. In addition, we suggest candidate disease genes using gene prioritization based on gene co-expression analysis.


Assuntos
Epilepsias Mioclônicas/genética , Heterogeneidade Genética , Músculo Liso/fisiopatologia , Convulsões/genética , Alelos , Mapeamento Cromossômico , Cromossomos Humanos Par 2 , Epilepsias Mioclônicas/fisiopatologia , Feminino , Efeito Fundador , Ligação Genética , Genótipo , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Convulsões/fisiopatologia
16.
Eur J Hum Genet ; 24(12): 1761-1770, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27352968

RESUMO

Genetic generalized epilepsy (GGE), formerly known as idiopathic generalized epilepsy, is the most common form of epilepsy and is thought to have predominant genetic etiology. GGE are clinically characterized by absence, myoclonic, or generalized tonic-clonic seizures with electroencephalographic pattern of bilateral, synchronous, and symmetrical spike-and-wave discharges. Despite their strong heritability, the genetic basis of generalized epilepsies remains largely elusive. Nevertheless, recent advances in genetic technology have led to the identification of numerous genes and genomic defects in various types of epilepsies in the past few years. In the present study, we performed whole-exome sequencing in a family with GGE consistent with the diagnosis of eyelid myoclonia with absences. We found a nonsense variant (c.196C>T/p.(Arg66*)) in RORB, which encodes the beta retinoid-related orphan nuclear receptor (RORß), in four affected family members. In addition, two de novo variants (c.218T>C/p.(Leu73Pro); c.1249_1251delACG/p.(Thr417del)) were identified in sporadic patients by trio-based exome sequencing. We also found two de novo deletions in patients with behavioral and cognitive impairment and epilepsy: a 52-kb microdeletion involving exons 5-10 of RORB and a larger 9q21-microdeletion. Furthermore, we identified a patient with intellectual disability and a balanced translocation where one breakpoint truncates RORB and refined the phenotype of a recently reported patient with RORB deletion. Our data support the role of RORB gene variants/CNVs in neurodevelopmental disorders including epilepsy, and especially in generalized epilepsies with predominant absence seizures.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia Generalizada/genética , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Adulto , Criança , Pontos de Quebra do Cromossomo , Deleção Cromossômica , Códon sem Sentido , Deficiências do Desenvolvimento/diagnóstico , Epilepsia Generalizada/diagnóstico , Exoma , Éxons , Feminino , Humanos , Masculino , Linhagem , Síndrome , Translocação Genética
17.
J Neurol ; 263(8): 1559-64, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27230854

RESUMO

Mutations in XPR1, a gene encoding an inorganic phosphate exporter, have recently been identified in patients with primary familial brain calcification (PFBC). Using Sanger sequencing, we screened XPR1 in 18 unrelated patients with PFBC and no SLC20A2, PDGFB, or PDGFRB mutation. XPR1 variants were tested in an in vitro physiological complementation assay and patient blood cells were assessed ex vivo for phosphate export. We identified a novel c.260T > C, p.(Leu87Pro) XPR1 variant in a 41-year-old man complaining of micrographia and dysarthria and demonstrating mild parkinsonism, cerebellar ataxia and executive dysfunction. Brain (123)I-Ioflupane scintigraphy showed marked dopaminergic neuron loss. Peripheral blood cells from the patient exhibited decreased phosphate export. XPR1 in which we introduced the mutation was not detectable at the cell surface and did not lead to phosphate export. These results confirm that loss of XPR1-mediated phosphate export function causes PFBC, occurring in less than 8 % of cases negative for the other genes, and may be responsible for parkinsonism.


Assuntos
Encefalopatias/genética , Calcinose/genética , Saúde da Família , Mutação/genética , Receptores Acoplados a Proteínas-G/genética , Receptores Virais/genética , Adulto , Encefalopatias/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Feminino , Estudos de Associação Genética , Humanos , Imagem por Ressonância Magnética , Masculino , Nortropanos/farmacocinética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Cintilografia , Transfecção
18.
Mov Disord ; 31(1): 62-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26388117

RESUMO

BACKGROUND: Friedreich's ataxia usually occurs before the age of 25. Rare variants have been described, such as late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia, occurring after 25 and 40 years, respectively. We describe the clinical, functional, and molecular findings from a large series of late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia and compare them with typical-onset Friedreich's ataxia. METHODS: Phenotypic and genotypic comparison of 44 late-onset Friedreich's ataxia, 30 very late-onset Friedreich's ataxia, and 180 typical Friedreich's ataxia was undertaken. RESULTS: Delayed-onset Friedreich's ataxia (late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia) had less frequently dysarthria, abolished tendon reflexes, extensor plantar reflexes, weakness, amyotrophy, ganglionopathy, cerebellar atrophy, scoliosis, and cardiomyopathy than typical-onset Friedreich's ataxia, along with less severe functional disability and shorter GAA expansion on the smaller allele (P < 0.001). Delayed-onset Friedreich's ataxia had lower scale for the assessment and rating of ataxia and spinocerebellar degeneration functional scores and longer disease duration before wheelchair confinement (P < 0.001). Both GAA expansions were negatively correlated to age at disease onset (P < 0.001), but the smaller GAA expansion accounted for 62.9% of age at onset variation and the larger GAA expansion for 15.6%. In this comparative study of late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia, no differences between these phenotypes were demonstrated. CONCLUSION: Typical- and delayed-onset Friedreich's ataxia are different and Friedreich's ataxia is heterogeneous. Late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia appear to belong to the same clinical and molecular continuum and should be considered together as "delayed-onset Friedreich's ataxia." As the most frequently inherited ataxia, Friedreich's ataxia should be considered facing compatible pictures, including atypical phenotypes (spastic ataxia, retained reflexes, lack of dysarthria, and lack of extraneurological signs), delayed disease onset (even after 60 years of age), and/or slow disease progression.


Assuntos
Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Idade de Início , Idoso , Cardiomiopatias/diagnóstico , Cardiomiopatias/etiologia , Criança , Eletrocardiografia , Feminino , Ataxia de Friedreich/sangue , Ataxia de Friedreich/fisiopatologia , Genótipo , Hemoglobina A Glicada/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Cooperação Internacional , Estimativa de Kaplan-Meier , Imagem por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Adulto Jovem
19.
PLoS One ; 10(7): e0131512, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147510

RESUMO

Growing evidence supports a link between fatty acid metabolism and amyotrophic lateral sclerosis (ALS). Here we determined the fatty acid composition of blood lipids to identify markers of disease progression and survival. We enrolled 117 patients from two clinical centers and 48 of these were age and gender matched with healthy volunteers. We extracted total lipids from serum and blood cells, and separated fatty acid methyl esters by gas chromatography. We measured circulating biochemical parameters indicative of the metabolic status. Association between fatty acid composition and clinical readouts was studied, including ALS functional rating scale-revised (ALSFRS-R), survival, disease duration, site of onset and body mass index. Palmitoleate (16:1) and oleate (18:1) levels, and stearoyl-CoA desaturase indices (16:1/16:0 and 18:1/18:0) significantly increased in blood cells from ALS patients compared to healthy controls. Palmitoleate levels and 16:1/16:0 ratio in blood cells, but not body mass index or leptin concentrations, negatively correlated with ALSFRS-R decline over a six-month period (p<0.05). Multivariate Cox analysis, with age, body mass index, site of onset and ALSFRS-R as covariables, showed that blood cell 16:1/16:0 ratio was an independent prognostic factor for survival (hazard ratio=0.1 per unit of ratio, 95% confidence interval=0.01-0.57, p=0.009). In patients with high 16:1/16:0 ratio, survival at blood collection was extended by 10 months, as compared to patients with low ratio. The 16:1/16:0 index is an easy-to-handle parameter that predicts survival of ALS patients independently of body mass index. It therefore deserves further validation in larger cohorts for being used to assess disease outcome and effects of disease-modifying drugs.


Assuntos
Esclerose Amiotrófica Lateral/sangue , Esclerose Amiotrófica Lateral/mortalidade , Ácidos Graxos Monoinsaturados/sangue , Ácido Palmítico/sangue , Adulto , Idoso , Índice de Massa Corporal , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Leptina/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , Índice de Gravidade de Doença , Taxa de Sobrevida
20.
J Neuroinflammation ; 12: 46, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-25889963

RESUMO

BACKGROUND: Antibodies against myelin oligodendrocyte glycoprotein (MOG) have been identified in a subgroup of pediatric patients with inflammatory demyelinating disease of the central nervous system (CNS) and in some patients with neuromyelitis optica spectrum disorder (NMOSD). The aim of this study was to examine the frequency, clinical features, and long-term disease course of patients with anti-MOG antibodies in a European cohort of NMO/NMOSD. FINDINGS: Sera from 48 patients with NMO/NMOSD and 48 patients with relapsing-remitting multiple sclerosis (RR-MS) were tested for anti-aquaporin-4 (AQP4) and anti-MOG antibodies with a cell-based assay. Anti-MOG antibodies were found in 4/17 patients with AQP4-seronegative NMO/NMOSD, but in none of the AQP4-seropositive NMO/NMOSD (n = 31) or RR-MS patients (n = 48). MOG-seropositive patients tended towards younger disease onset with a higher percentage of patients with pediatric (<18 years) disease onset (MOG+, AQP4+, MOG-/AQP4-: 2/4, 3/31, 0/13). MOG-seropositive patients presented more often with positive oligoclonal bands (OCBs) (3/3, 5/29, 1/13) and brain magnetic resonance imaging (MRI) lesions during disease course (2/4, 5/31, 1/13). Notably, the mean time to the second attack affecting a different CNS region was longer in the anti-MOG antibody-positive group (11.3, 3.2, 3.4 years). CONCLUSIONS: MOG-seropositive patients show a diverse clinical phenotype with clinical features resembling both NMO (attacks mainly confined to the spinal cord and optic nerves) and MS with an opticospinal presentation (positive OCBs, brain lesions). Anti-MOG antibodies can serve as a diagnostic and maybe prognostic tool in patients with an AQP4-seronegative NMO phenotype and should be tested in those patients.


Assuntos
Autoanticorpos/sangue , Glicoproteína Mielina-Oligodendrócito/imunologia , Neuromielite Óptica/sangue , Adulto , Idoso , Aquaporina 4/imunologia , Feminino , Humanos , Imagem por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA