Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(41): 20280-20285, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548383

RESUMO

Using X-ray emission spectroscopy, we find appreciable local magnetic moments until 30 GPa to 40 GPa in the high-pressure phase of iron; however, no magnetic order is detected with neutron powder diffraction down to 1.8 K, contrary to previous predictions. Our first-principles calculations reveal a "spin-smectic" state lower in energy than previous results. This state forms antiferromagnetic bilayers separated by null spin bilayers, which allows a complete relaxation of the inherent frustration of antiferromagnetism on a hexagonal close-packed lattice. The magnetic bilayers are likely orientationally disordered, owing to the soft interlayer excitations and the near-degeneracy with other smectic phases. This possible lack of long-range correlation agrees with the null results from neutron powder diffraction. An orientationally disordered, spin-smectic state resolves previously perceived contradictions in high-pressure iron and could be integral to explaining its puzzling superconductivity.

2.
Sci Adv ; 5(8): eaaw5019, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31497643

RESUMO

The in situ two-dimensional (2D) and 3D imaging of the chemical speciation of organic fossils is an unsolved problem in paleontology and cultural heritage. Here, we use x-ray Raman scattering (XRS)-based imaging at the carbon K-edge to form 2D and 3D images of the carbon chemistry in two exceptionally preserved specimens, a fossil plant dating back from the Carboniferous and an ancient insect entrapped in 53-million-year-old amber. The 2D XRS imaging of the plant fossil reveals a homogeneous chemical composition with micrometric "pockets" of preservation, likely inherited from its geological history. The 3D XRS imaging of the insect cuticle displays an exceptionally well preserved remaining chemical signature typical of polysaccharides such as chitin around a largely hollowed-out inclusion. Our results open up new perspectives for in situ chemical speciation imaging of fossilized organic materials, with the potential to enhance our understanding of organic specimens and their paleobiology.

3.
Nano Lett ; 19(1): 488-493, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525684

RESUMO

We investigate black phosphorus by time- and angle-resolved photoelectron spectroscopy. The electrons excited by 1.57 eV photons relax down to a conduction band minimum within 1 ps. Despite the low band gap value, no relevant amount of carrier multiplication could be detected at an excitation density 3-6 × 1019 cm-3. In the thermalized state, the band gap renormalization is negligible up to a photoexcitation density that fills the conduction band by 150 meV. Astonishingly, a Stark broadening of the valence band takes place at an early delay time. We argue that electrons and holes with a high excess energy lead to inhomogeneous screening of near surface fields. As a consequence, the chemical potential is no longer pinned in a narrow impurity band.

4.
J Phys Chem Lett ; 9(15): 4457-4462, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30020787

RESUMO

X-ray absorption and Auger electron spectroscopies are demonstrated to be powerful tools to unravel the electronic structure of solvated ions. In this work for the first time, we use a combination of these methods in the tender X-ray regime. This allowed us to address electronic transitions from deep core levels, to probe environmental effects, specifically in the bulk of the solution since the created energetic Auger electrons possess large mean free paths, and moreover, to obtain dynamical information about the ultrafast delocalization of the core-excited electron. In the considered exemplary aqueous KCl solution, the solvated isoelectronic K+ and Cl- ions exhibit notably different Auger electron spectra as a function of the photon energy. Differences appear due to dipole-forbidden transitions in aqueous K+ whose occurrence, according to the performed ab initio calculations, becomes possible only in the presence of solvent water molecules.

5.
ACS Appl Mater Interfaces ; 10(9): 8132-8140, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29411962

RESUMO

Vertical crossbar devices based on manganite and cobalt injecting electrodes and a metal-quinoline molecular transport layer are known to manifest both magnetoresistance (MR) and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the MR and magnetic modulation of bistability. To explain the device functionality, we identify the mechanism responsible for electrical switching by associating the electrical conductivity and the impedance behavior with the chemical states of buried layers obtained by in operando photoelectron spectroscopy. These measurements revealed that a significant fraction of oxygen ions migrate under voltage application, resulting in a modification of the electronic properties of the organic material and of the oxidation state of the interfacial layer with the ferromagnetic contacts. Variable oxygen doping of the organic molecules represents the key element for correlating bistability and MR, and our measurements provide the first experimental evidence in favor of the impurity-driven model describing the spin transport in organic semiconductors in similar devices.

6.
Anal Chem ; 89(20): 10819-10826, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28902506

RESUMO

Carbon compounds are ubiquitous and occur in a diversity of chemical forms in many systems including ancient and historic materials ranging from cultural heritage to paleontology. Determining their speciation cannot only provide unique information on their origin but may also elucidate degradation processes. Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge (280-350 eV) is a very powerful method to probe carbon speciation. However, the short penetration depth of soft X-rays imposes stringent constraints on sample type, preparation, and analytical environment. A hard X-ray probe such as X-ray Raman scattering (XRS) can overcome many of these difficulties. Here we report the use of XRS at ∼6 keV incident energy to collect carbon K-edge XANES data and probe the speciation of organic carbon in several specimens relevant to cultural heritage and natural history. This methodology enables the measurement to be done in a nondestructive way, in air, and provides information that is not compromised by surface contamination by ensuring that the dominant signal contribution is from the bulk of the probed material. Using the backscattering geometry at large photon momentum transfer maximizes the XRS signal at the given X-ray energy and enhances nondipole contributions compared to conventional XANES, thereby augmenting the speciation sensitivity. The capabilities and limitations of the technique are discussed. We show that despite its small cross section, for a range of systems the XRS method can provide satisfactory signals at realistic experimental conditions. XRS constitutes a powerful complement to FT-IR, Raman, and conventional XANES spectroscopy, overcoming some of the limitations of these techniques.

7.
ACS Appl Mater Interfaces ; 9(27): 23099-23106, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613812

RESUMO

We report the study of anatase TiO2(001)-oriented thin films grown by pulsed laser deposition on LaAlO3(001). A combination of in situ and ex situ methods has been used to address both the origin of the Ti3+-localized states and their relationship with the structural and electronic properties on the surface and the subsurface. Localized in-gap states are analyzed using resonant X-ray photoelectron spectroscopy and are related to the Ti3+ electronic configuration, homogeneously distributed over the entire film thickness. We find that an increase in the oxygen pressure corresponds to an increase in Ti3+ only in a well-defined range of deposition pressure; outside this range, Ti3+ and the strength of the in-gap states are reduced.

8.
J Phys Chem Lett ; 8(12): 2730-2734, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28562043

RESUMO

Near-zone Förster resonant energy transfer is the main effect responsible for excitation energy flow in the optical region and is frequently used to obtain structural information. In the hard X-ray region, the Förster law is inadequate because the wavelength is generally shorter than the distance between donors and acceptors; hence, far-zone resonant energy transfer (FZRET) becomes dominant. We demonstrate the characteristics of X-ray FZRET and its fundamental differences with the ordinary near-zone resonant energy-transfer process in the optical region by recording and analyzing two qualitatively different systems: high-density CuO polycrystalline powder and SF6 diluted gas. We suggest a method to estimate geometrical structure using X-ray FZRET employing as a ruler the distance-dependent shift of the acceptor core ionization potential induced by the Coulomb field of the core-ionized donor.

9.
Phys Chem Chem Phys ; 18(22): 15133-42, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199185

RESUMO

We have measured resonant-Auger decay following Cl 1s(-1) excitations in HCl and CH3Cl molecules, and extracted the pseudo-cross sections of different Cl 2p(-2) final states. These cross sections show clear evidence of shake processes as well as contributions of electronic state-lifetime interference (ELI). To describe the spectra we developed a fit approach that takes into account ELI contributions and ultrafast nuclear dynamics in dissociative core-excited states. Using this approach we utilized the ELI contributions to obtain the intensity ratios of the overlapping states Cl 1s(-1)4pπ/1s(-1)4pσ in HCl and Cl 1s(-1)4pe/1s(-1)4pa1 in CH3Cl. The experimental value for HCl is compared with theoretical results showing satisfactory agreement.

10.
Sci Rep ; 5: 17937, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658647

RESUMO

Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4Sn6 is a strongly correlated material with non-trivial topology.

11.
Phys Rev Lett ; 114(9): 093001, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793809

RESUMO

Direct measurements of Ar^{+} 1s^{-1}2p^{-1}nl double-core-hole shake-up states are reported using conventional single-channel photoemission, offering a new and relatively easy means to study such species. The high-quality results yield accurate energies and lifetimes of the double-core-hole states. Their photoemission spectrum also can be likened to 1s absorption of an exotic argon ion with a 2p core vacancy, providing new information about the spectroscopy of both this unusual ionic state as well as the neutral atom.

12.
Nano Lett ; 15(4): 2533-41, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25768912

RESUMO

The electric field control of functional properties is a crucial goal in oxide-based electronics. Nonvolatile switching between different resistivity or magnetic states in an oxide channel can be achieved through charge accumulation or depletion from an adjacent ferroelectric. However, the way in which charge distributes near the interface between the ferroelectric and the oxide remains poorly known, which limits our understanding of such switching effects. Here, we use a first-of-a-kind combination of scanning transmission electron microscopy with electron energy loss spectroscopy, near-total-reflection hard X-ray photoemission spectroscopy, and ab initio theory to address this issue. We achieve a direct, quantitative, atomic-scale characterization of the polarization-induced charge density changes at the interface between the ferroelectric BiFeO3 and the doped Mott insulator Ca(1-x)Ce(x)MnO3, thus providing insight on how interface-engineering can enhance these switching effects.

13.
Inorg Chem ; 53(20): 10903-8, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25275633

RESUMO

Probing the local environment of low-Z elements, such as oxygen, is of great interest for understanding the atomic-scale behavior in materials, but it requires experimental techniques allowing it to work with versatile sample environments. In this paper, the local environment of lithium borate crystals is investigated using non-resonant inelastic X-ray scattering (NRIXS) at energy losses corresponding to the oxygen K-edge. Large variations of the spectral features are observed close to the edge onset in the 535-540 eV energy range when varying the Li2O content. Calculations allow identification of contributions associated with bridging oxygen (BO) and non-bridging oxygen (NBO) atoms. The main result resides in the observed core-level shift of about 1.7 eV in the spectral signatures of the BO and NBO. The clear signature at 535 eV in the O K-edge NRXIS spectrum is thus an original way to probe the presence of NBOs in borates, with the great advantage of making possible the use of complex environments such as a high-pressure cell or high-temperature device for in situ measurements.

14.
Nat Commun ; 5: 4069, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24906107

RESUMO

Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids.

15.
Proc Natl Acad Sci U S A ; 105(34): 12159-63, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18711146

RESUMO

The absorption of light by materials proceeds through the formation of excitons, which are states in which an excited electron is bound to the valence hole it vacated. Understanding the structure and dynamics of excitons is important, for example, for developing technologies for light-emitting diodes or solar energy conversion. However, there has never been an experimental means to study the time-dependent structure of excitons directly. Here, we use causality-inverted inelastic x-ray scattering (IXS) to image the charge-transfer exciton in the prototype insulator LiF, with resolutions Delta t = 20.67 as (2.067 x 10(-17) s) in time and Delta x = 0.533 A (5.33 x 10(-11) m) in space. Our results show that the exciton has a modulated internal structure and is coherently delocalized over two unit cells of the LiF crystal (approximately 8 A). This structure changes only modestly during the course of its life, which establishes it unambiguously as a Frenkel exciton and thus amenable to a simplified theoretical description. Our results resolve an old controversy about excitons in the alkali halides and demonstrate the utility of IXS for imaging attosecond electron dynamics in condensed matter.

16.
Phys Rev Lett ; 98(19): 196404, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17677640

RESUMO

We investigate the magnetic properties of archetypal transition-metal oxides MnO, FeO, CoO, and NiO under very high pressure by x-ray emission spectroscopy at the Kbeta line. We observe a strong modification of the magnetism in the megabar range in all the samples except NiO. The results are analyzed within a multiplet approach including charge-transfer effects. The spectral changes are well accounted for by changes of the ligand field acting on the d electrons and allows us to extract the d-hybridization strength, O-2p bandwidth and ionic crystal field across the magnetic transition. This approach allows first-hand insight into the mechanism of the pressure-induced spin transition.

17.
Science ; 305(5682): 383-6, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15256667

RESUMO

We measured the spin state of iron in magnesium silicate perovskite (Mg(0.9),Fe(0.1))SiO(3) at high pressure and found two electronic transitions occurring at 70 gigapascals and at 120 gigapascals, corresponding to partial and full electron pairing in iron, respectively. The proportion of iron in the low spin state thus grows with depth, increasing the transparency of the mantle in the infrared region, with a maximum at pressures consistent with the D" layer above the core-mantle boundary. The resulting increase in radiative thermal conductivity suggests the existence of nonconvecting layers in the lowermost mantle.

18.
Science ; 300(5620): 789-91, 2003 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12677070

RESUMO

We measured the spin state of iron in ferropericlase (Mg0.83Fe0.17)O at high pressure and found a high-spin to low-spin transition occurring in the 60- to 70-gigapascal pressure range, corresponding to depths of 2000 kilometers in Earth's lower mantle. This transition implies that the partition coefficient of iron between ferropericlase and magnesium silicate perovskite, the two main constituents of the lower mantle, may increase by several orders of magnitude, depleting the perovskite phase of its iron. The lower mantle may then be composed of two different layers. The upper layer would consist of a phase mixture with about equal partitioning of iron between magnesium silicate perovskite and ferropericlase, whereas the lower layer would consist of almost iron-free perovskite and iron-rich ferropericlase. This stratification is likely to have profound implications for the transport properties of Earth's lowermost mantle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA