Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32306487

RESUMO

Allopatric divergence is often initiated by geological uplift and restriction to sky-islands, climate oscillations, or river capture. However, it can be difficult to establish which mechanism was the most likely to generate the current phylogeographical structure of a species. Recently, genomic data in conjunction with a model testing framework have been applied to address this issue in animals. To test whether such an approach is also likely to be successful in plants, we used population genomic data of the Rheum palmatum complex from the Eastern Asiatic Region, in conjunction with biogeographical reconstruction and demographic model selection, to identify the potential mechanism(s) which have led to the current level of divergence. Our results indicate that the R. palmatum complex originated in the central Hengduan Mts and possibly in regions further east, and then dispersed westward and eastward resulting in genetically distinct lineages. Populations are likely to have diverged in refugia during climate oscillations followed by subsequent expansion and secondary contact. However, model simulations within the western lineage of the R. palmatum complex cannot reject a restriction to sky-islands as a possible mechanism of diversification due to the genetically ambiguous position of one population. This highlights that genetically mixed populations might introduce ambiguity regarding the best diversification model in some cases. Although it might be possible to resolve this ambiguity using other data, sometimes this could prove to be difficult in complex biogeographical areas.

2.
Appl Plant Sci ; 7(7): e11277, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346509

RESUMO

Premise: Glyptostrobus pensilis (Cupressaceae) is a critically endangered conifer native to China, Laos, and Vietnam, with only a few populations remaining in the wild. Methods and Results: Using a complete chloroplast genome sequence, we designed 70 cpSSR loci and tested them for amplification success and polymorphism in 16 samples. Ten loci were found to be polymorphic and their genetic diversity was characterized using a total of 83 individuals from three populations in China. A total of 43 haplotypes were present, the effective number of haplotypes varied from 4.55 to 13.36, and the haplotypic richness ranged from 8.04 to 16.00. Gene diversity ranged from 0.81 to 0.97 (average 0.89). The number of alleles per locus and population ranged from one to eight, and the effective number of alleles ranged from 1.00 to 3.90. All polymorphic loci were successfully amplified in the related species Cryptomeria japonica var. sinensis, Taxodium distichum, T. ascendens, and Cunninghamia lanceolata. Conclusions: These newly developed chloroplast microsatellites will be useful for population genetic and phylogeographic analyses of G. pensilis and related species.

3.
Front Genet ; 10: 444, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156705

RESUMO

Euphrasia (Orobanchaceae) is a genus which is widely distributed in temperate regions of the southern and northern hemisphere. The taxonomy of Euphrasia is still controversial due to the similarity of morphological characters and a lack of genomic resources. Here, we present the first complete chloroplast (cp) genome of this taxonomically challenging genus. The cp genome of Euphrasia regelii consists of 153,026 bp, including a large single-copy region (83,893 bp), a small single-copy region (15,801 bp) and two inverted repeats (26,666 bp). There are 105 unique genes, including 71 protein-coding genes, 30 tRNA and 4 rRNA genes. Although the structure and gene order is comparable to the one in other angiosperm cp genomes, genes encoding the NAD(P)H dehydrogenase complex are widely pseudogenized due to mutations resulting in frameshifts, and stop codon positions. We detected 36 dispersed repeats, 7 tandem repeats and 65 simple sequence repeat loci in the E. regelii plastome. Comparative analyses indicated that the cp genome of E. regelii is more conserved compared to other hemiparasitic taxa in the Pedicularideae and Buchnereae. No structural rearrangements or loss of genes were detected. Our analyses suggested that three genes (clpP, ycf2 and rps14) were under positive selection and other genes under purifying selection. Phylogenetic analysis of monophyletic Orobanchaceae based on 45 plastomes indicated a close relationship between E. regelii and Neobartsia inaequalis. In addition, autotrophic lineages occupied the earliest diverging branches in our phylogeny, suggesting that autotrophy is the ancestral trait in this parasitic family.

4.
Ann Bot ; 123(1): 153-167, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124771

RESUMO

Background and Aims: Rapid evolutionary divergence and reticulate evolution may result in phylogenetic relationships that are difficult to resolve using small nucleotide sequence data sets. Next-generation sequencing methods can generate larger data sets that are better suited to solving these puzzles. One major and long-standing controversy in conifers concerns generic relationships within the subfamily Cupressoideae (105 species, approx. 1/6 of all conifers) of Cupressaceae, in particular the relationship between Juniperus, Cupressus and the Hesperocyparis-Callitropsis-Xanthocyparis (HCX) clade. Here we attempt to resolve this question using transcriptome-derived data. Methods: Transcriptome sequences of 20 species from Cupressoideae were collected. Using MarkerMiner, single-copy nuclear (SCN) genes were extracted. These were applied to estimate phylogenies based on concatenated data, species trees and a phylogenetic network. We further examined the effect of alternative backbone topologies on downstream analyses, including biogeographic inference and dating analysis. Results: Based on the 73 SCN genes (>200 000 bp total alignment length) we considered, all tree-building methods lent strong support for the relationship (HCX, (Juniperus, Cupressus)); however, strongly supported conflicts among individual gene trees were also detected. Molecular dating suggests that these three lineages shared a most recent common ancestor approx. 60 million years ago (Mya), and that Juniperus and Cupressus diverged about 56 Mya. Ancestral area reconstructions (AARs) suggest an Asian origin for the entire clade, with subsequent dispersal to North America, Europe and Africa. Conclusions: Our analysis of SCN genes resolves a controversial phylogenetic relationship in the Cupressoideae, a major clade of conifers, and suggests that rapid evolutionary divergence and incomplete lineage sorting probably acted together as the source for conflicting phylogenetic inferences between gene trees and between our robust results and recently published studies. Our updated backbone topology has not substantially altered molecular dating estimates relative to previous studies; however, application of the latest AAR approaches has yielded a clearer picture of the biogeographic history of Cupressoideae.


Assuntos
Cupressaceae/classificação , Cupressaceae/genética , Proteínas de Plantas/análise , Transcriptoma , Filogenia
6.
Sci Rep ; 8(1): 9424, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930263

RESUMO

Medicinal herbs of high quality and with significant clinical effects have been designated as top-geoherbs in traditional Chinese medicine (TCM). However, the validity of this concept using genetic markers has not been widely tested. In this study, we investigated the genetic variation within the Rheum palmatum complex (rhubarb), an important herbal remedy in TCM, using a phylogeographic (six chloroplast DNA regions, five nuclear DNA regions, and 14 nuclear microsatellite loci) and a chemical approach (anthraquinone content). Genetic and chemical data identified two distinct groups in the 38 analysed populations from the R. palmatum complex which geographically coincide with the traditional top-geoherb and non-top-geoherb areas of rhubarb. Molecular dating suggests that the two groups diverged in the Quaternary c. 2.0 million years ago, a time of repeated climate changes and uplift of the Qinghai-Tibetan Plateau. Our results show that the ancient TCM concept of top-geoherb and non-top-geoherb areas corresponds to genetically and chemically differentiated groups in rhubarb.


Assuntos
Polimorfismo Genético , Rheum/genética , Ecossistema , Genoma de Cloroplastos , Repetições de Microssatélites , Plantas Medicinais/química , Plantas Medicinais/genética , Rheum/química
7.
AoB Plants ; 10(3): ply026, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29765588

RESUMO

DNA barcoding is emerging as a useful tool not only for species identification but also for studying evolutionary and ecological processes. Although plant DNA barcodes do not always provide species-level resolution, the generation of large DNA barcode data sets can provide insights into the mechanisms underlying the generation of species diversity. Here, we study evolutionary processes in taxonomically complex British Euphrasia (Orobanchaceae), a group with multiple ploidy levels, frequent self-fertilization, young species divergence and widespread hybridization. We use a phylogenetic approach to investigate the colonization history of British Euphrasia, followed by a DNA barcoding survey and population genetic analyses to reveal the causes of shared sequence variation. Phylogenetic analysis shows Euphrasia have colonized Britain from mainland Europe on multiple occasions. DNA barcoding reveals that no British Euphrasia species has a consistent diagnostic sequence profile, and instead, plastid haplotypes are either widespread across species, or are population specific. The partitioning of nuclear genetic variation suggests differences in ploidy act as a barrier to gene exchange, while the divergence between diploid and tetraploid ITS sequences supports the polyploids being allotetraploid in origin. Overall, these results show that even when lacking species-level resolution, analyses of DNA barcoding data can reveal evolutionary patterns in taxonomically complex genera.

8.
J Pharm Biomed Anal ; 149: 403-409, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29154110

RESUMO

Siberian ginseng (Eleutherococcus senticosus, Araliaceae) and roseroot (Rhodiola rosea, Rosaceae) are popular herbal supplements which have been shown to improve resilience to conditions such as stress and exhaustion. Using DNA barcoding methods we tested 25 Siberian ginseng and 14 roseroot products which are widely available to UK customers to test whether the herbal ingredient stated on the label is also in the product. All Siberian ginseng supplements contained E. senticosus, however, 36% also contained an Eleutherococcus species other than E. senticosus. In three out of the 13 roseroot products which produced amplifiable DNA, we could only retrieve sequences matching alfalfa (declared on the product label) and fenugreek (not declared). In the other 10 supplements Rhodiola was detected but only five matched the target species R. rosea. As DNA can get severely degraded during the manufacturing process we did not take the absence of Rhodiola DNA as proof for a compromised product. Contamination could explain the presence of non-target species such as fenugreek but is unlikely to be account for the detection of congeneric Rhodiola species in roseroot preparations. Our results therefore suggest that the substitution or mixing of the target medicinal ingredient in these two popular supplements with other species is common.


Assuntos
Suplementos Nutricionais/análise , Eleutherococcus/química , Contaminação de Alimentos/análise , Rotulagem de Alimentos , Rhodiola/química , Código de Barras de DNA Taxonômico , Suplementos Nutricionais/normas , Eleutherococcus/genética , Medicago sativa/química , Medicago sativa/genética , Filogenia , Rhodiola/genética , Trigonella/química , Trigonella/genética , Reino Unido
9.
Am J Bot ; 103(5): 888-98, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27208357

RESUMO

PREMISE OF THE STUDY: Cryptic species represent a conservation challenge, because distributions and threats cannot be accurately assessed until species are recognized and defined. Cryptic species are common in diminutive and morphologically simple organisms, but are rare in charismatic and/or highly visible groups such as conifers. New Caledonia, a small island in the southern Pacific is a hotspot of diversity for the emblematic conifer genus Araucaria (Araucariaceae, Monkey Puzzle trees) where 13 of the 19 recognized species are endemic. METHODS: We sampled across the entire geographical distribution of two closely related species (Araucaria rulei and A. muelleri) and screened them for genetic variation at 12 nuclear and 14 plastid microsatellites and one plastid minisatellite; a subset of the samples was also examined using leaf morphometrics. KEY RESULTS: The genetic data show that populations of the endangered A. muelleri fall into two clearly distinct genetic groups: one corresponding to montane populations, the other corresponding to trees from lower elevation populations from around the Goro plateau. These Goro plateau populations are more closely related to A. rulei, but are sufficiently genetically and morphological distinct to warrant recognition as a new species. CONCLUSIONS: Our study shows the presence of a previously unrecognized species in this flagship group, and that A. muelleri has 30% fewer individuals than previously thought. Combined, this clarification of species diversity and distributions provides important information to aid conservation planning for New Caledonian Araucaria.


Assuntos
Variação Genética , Traqueófitas/genética , Análise Discriminante , Análise Fatorial , Genética Populacional , Geografia , Haplótipos/genética , Repetições de Microssatélites/genética , Nova Caledônia , Filogenia , Densidade Demográfica , Análise de Componente Principal , Característica Quantitativa Herdável , Traqueófitas/anatomia & histologia
10.
Am J Bot ; 102(7): 1089-107, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26199366

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Understanding fern (monilophyte) phylogeny and its evolutionary timescale is critical for broad investigations of the evolution of land plants, and for providing the point of comparison necessary for studying the evolution of the fern sister group, seed plants. Molecular phylogenetic investigations have revolutionized our understanding of fern phylogeny, however, to date, these studies have relied almost exclusively on plastid data.• METHODS: Here we take a curated phylogenomics approach to infer the first broad fern phylogeny from multiple nuclear loci, by combining broad taxon sampling (73 ferns and 12 outgroup species) with focused character sampling (25 loci comprising 35877 bp), along with rigorous alignment, orthology inference and model selection.• KEY RESULTS: Our phylogeny corroborates some earlier inferences and provides novel insights; in particular, we find strong support for Equisetales as sister to the rest of ferns, Marattiales as sister to leptosporangiate ferns, and Dennstaedtiaceae as sister to the eupolypods. Our divergence-time analyses reveal that divergences among the extant fern orders all occurred prior to ∼200 MYA. Finally, our species-tree inferences are congruent with analyses of concatenated data, but generally with lower support. Those cases where species-tree support values are higher than expected involve relationships that have been supported by smaller plastid datasets, suggesting that deep coalescence may be reducing support from the concatenated nuclear data.• CONCLUSIONS: Our study demonstrates the utility of a curated phylogenomics approach to inferring fern phylogeny, and highlights the need to consider underlying data characteristics, along with data quantity, in phylogenetic studies.


Assuntos
Gleiquênias/genética , Sequência de Bases , Evolução Biológica , DNA de Plantas/química , DNA de Plantas/genética , Gleiquênias/classificação , Dosagem de Genes , Loci Gênicos , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Transcriptoma
11.
Mol Ecol Resour ; 15(5): 1067-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25611173

RESUMO

Obtaining accurate phylogenies and effective species discrimination using a small standardized set of plastid genes is challenging in evolutionarily young lineages. Complete plastid genome sequencing offers an increasingly easy-to-access source of characters that helps address this. The usefulness of this approach, however, depends on the extent to which plastid haplotypes track morphological species boundaries. We have tested the power of complete plastid genomes to discriminate among multiple accessions of 11 of 13 New Caledonian Araucaria species, an evolutionarily young lineage where the standard DNA barcoding approach has so far failed and phylogenetic relationships have remained elusive. Additionally, 11 nuclear gene regions were Sanger sequenced for all accessions to ascertain the success of species discrimination using a moderate number of nuclear genes. Overall, fewer than half of the New Caledonian Araucaria species with multiple accessions were monophyletic in the plastid or nuclear trees. However, the plastid data retrieved a phylogeny with a higher resolution compared to any previously published tree of this clade and supported the monophyly of about twice as many species and nodes compared to the nuclear data set. Modest gains in discrimination thus are possible, but using complete plastid genomes or a small number of nuclear genes in DNA barcoding may not substantially raise species discriminatory power in many evolutionarily young lineages. The big challenge therefore remains to develop techniques that allow routine access to large numbers of nuclear markers scaleable to thousands of individuals from phylogenetically disparate sample sets.


Assuntos
Genomas de Plastídeos , Filogenia , Plastídeos/genética , Análise de Sequência de DNA , Traqueófitas/classificação , Traqueófitas/genética , Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Ilhas do Pacífico
12.
PLoS One ; 9(10): e110308, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25340350

RESUMO

New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a 'museum' for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island for the radiation of the Pacific Araucaria sect. Eutacta clade.


Assuntos
Biodiversidade , Evolução Biológica , Traqueófitas/fisiologia , Teorema de Bayes , Calibragem , Fósseis , Nova Caledônia , Filogenia , Análise de Sequência de DNA , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 111(18): 6672-7, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24733898

RESUMO

Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.


Assuntos
Briófitas/genética , Gleiquênias/genética , Transferência Genética Horizontal , Fotorreceptores de Plantas/genética , Proteínas de Algas/genética , Anthocerotophyta/genética , Sequência de Bases , DNA de Plantas/genética , Evolução Molecular , Genes de Plantas , Dados de Sequência Molecular , Fototropinas/genética , Filogenia , Fitocromo/genética , Proteínas Recombinantes de Fusão/genética , Transcriptoma , Xantofilas/genética
14.
PLoS One ; 8(10): e76957, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116189

RESUMO

BACKGROUND: Molecular phylogenetic investigations have revolutionized our understanding of the evolutionary history of ferns-the second-most species-rich major group of vascular plants, and the sister clade to seed plants. The general absence of genomic resources available for this important group of plants, however, has resulted in the strong dependence of these studies on plastid data; nuclear or mitochondrial data have been rarely used. In this study, we utilize transcriptome data to design primers for nuclear markers for use in studies of fern evolutionary biology, and demonstrate the utility of these markers across the largest order of ferns, the Polypodiales. PRINCIPAL FINDINGS: We present 20 novel single-copy nuclear regions, across 10 distinct protein-coding genes: ApPEFP_C, cryptochrome 2, cryptochrome 4, DET1, gapCpSh, IBR3, pgiC, SQD1, TPLATE, and transducin. These loci, individually and in combination, show strong resolving power across the Polypodiales phylogeny, and are readily amplified and sequenced from our genomic DNA test set (from 15 diploid Polypodiales species). For each region, we also present transcriptome alignments of the focal locus and related paralogs-curated broadly across ferns-that will allow researchers to develop their own primer sets for fern taxa outside of the Polypodiales. Analyses of sequence data generated from our genomic DNA test set reveal strong effects of partitioning schemes on support levels and, to a much lesser extent, on topology. A model partitioned by codon position is strongly favored, and analyses of the combined data yield a Polypodiales phylogeny that is well-supported and consistent with earlier studies of this group. CONCLUSIONS: The 20 single-copy regions presented here more than triple the single-copy nuclear regions available for use in ferns. They provide a much-needed opportunity to assess plastid-derived hypotheses of relationships within the ferns, and increase our capacity to explore aspects of fern evolution previously unavailable to scientific investigation.


Assuntos
Gleiquênias/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Núcleo Celular/genética , Evolução Molecular , Gleiquênias/classificação , Dosagem de Genes , Perfilação da Expressão Gênica/métodos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
15.
Evolution ; 67(9): 2728-40, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24033179

RESUMO

To understand the evolutionary consequences of hybridization between the outcrossing plant Geum rivale (Rosaceae) and the selfer Geum urbanum, we tested the predictions of two simple models that assume either (A) low or (B) high pollen fitness in hybrids. Model A predicts only four genotypic classes (G. rivale, G. rivale backcross [BC(R)], F1, and Geum urbanum) and asymmetric introgression from inbreeding to outbreeding species. Model B predicts additional genotypic classes and potential generation of novel inbreeding lines in the hybrid swarm. Amplified fragment length polymorphism (AFLP) analysis of adults revealed only the four genotypes predicted by model A. However, microsatellite analysis of parent-progeny arrays demonstrated production of selfed offspring by F1 and BC(R) maternal parents and contribution of these genotypes to outcross pollen pools, as predicted by model B. Moreover, AFLP and morphological analysis showed that the offspring generation comprised genotypes and phenotypes covering the entire spectrum of variation between the two parental species, in line with model B. A common garden experiment indicated no systematic reduction in fitness of offspring derived from hybrid parents. The genetic structure of the adults in the Geum hybrid swarm cannot be explained by restricted mating patterns but may result from ecological selection acting on a diverse offspring population.


Assuntos
Aptidão Genética , Geum/genética , Hibridização Genética , Polimorfismo Genético , Genótipo , Geum/fisiologia , Endogamia , Repetições de Microssatélites/genética , Modelos Genéticos , Polinização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA