Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Omega ; 2(11): 8010-8019, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29214234


This paper highlights the relation between the shape of iron oxide (Fe3O4) particles and their magnetic sensing ability. We synthesized Fe3O4 nanocubes and nanospheres having tunable sizes via solvothermal and thermal decomposition synthesis reactions, respectively, to obtain samples in which the volumes and body diagonals/diameters were equivalent. Vibrating sample magnetometry (VSM) data showed that the saturation magnetization (Ms) and coercivity of 100-225 nm cubic magnetic nanoparticles (MNPs) were, respectively, 1.4-3.0 and 1.1-8.4 times those of spherical MNPs on a same-volume and same-body diagonal/diameter basis. The Curie temperature for the cubic Fe3O4 MNPs for each size was also higher than that of the corresponding spherical MNPs; furthermore, the cubic Fe3O4 MNPs were more crystalline than the corresponding spherical MNPs. For applications relying on both higher contact area and enhanced magnetic properties, higher-Ms Fe3O4 nanocubes offer distinct advantages over Fe3O4 nanospheres of the same-volume or same-body diagonal/diameter. We evaluated the sensing potential of our synthesized MNPs using giant magnetoresistive (GMR) sensing and force-induced remnant magnetization spectroscopy (FIRMS). Preliminary data obtained by GMR sensing confirmed that the nanocubes exhibited a distinct sensitivity advantage over the nanospheres. Similarly, FIRMS data showed that when subjected to the same force at the same initial concentration, a greater number of nanocubes remained bound to the sensor surface because of higher surface contact area. Because greater binding and higher Ms translate to stronger signal and better analytical sensitivity, nanocubes are an attractive alternative to nanospheres in sensing applications.

Nano Lett ; 16(5): 3014-21, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27045345


A simple direct method for the rapid fabrication of zinc oxide nanotube-nanowire hybrid structure in an environmentally friendly way is described here. Zinc foils were anodized in an aqueous solution of washing soda and baking soda at room temperature in order to obtain the hybrid architecture. At the beginning of the process nanowires were formed on the substrate. The wider nanowires transformed into nanotubes in about a minute and grew in length with time. The morphological integrity was maintained upon heat treatment at temperatures up to the melting point of the substrate (∼400 °C) except that the nanotube wall became porous. The chemiresistor devices fabricated using the heat-treated structure exhibited high response to low-concentration volatile organic compounds that are considered markers for breast cancer. The response was not significantly affected by high humidity or presence of hydrogen, methane, or carbon dioxide. The devices are expected to find use as breath sensors for noninvasive early detection of breast cancer.

Neoplasias da Mama/diagnóstico , Nanotubos/química , Nanofios/química , Compostos Orgânicos Voláteis/análise , Óxido de Zinco/química , Biomarcadores Tumorais/análise , Técnicas Biossensoriais/métodos , Testes Respiratórios/instrumentação , Feminino , Humanos , Umidade , Porosidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Propriedades de Superfície , Termodinâmica
J Mater Chem B ; 1(37)2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24288589


The encapsulation of bismuth as BiOCl/Bi2O3 within ultra-short (ca. 50 nm) single-walled carbon nanocapsules (US-tubes) has been achieved. The Bi@US-tubes have been characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Bi@US-tubes have been used for intracellular labeling of pig bone marrow-derived mesenchymal stem cells (MSCs) to show high X-ray contrast in computed tomography (CT) cellular imaging for the first time. The relatively high contrast is achieved with low bismuth loading (2.66% by weight) within the US-tubes and without compromising cell viability. X-ray CT imaging of Bi@US-tubes-labeled MSCs showed a nearly two-fold increase in contrast enhancement when compared to unlabeled MSCs in a 100 kV CT clinical scanner. The CT signal enhancement from the Bi@US-tubes is 500 times greater than polymer-coated Bi2S3 nanoparticles and several-fold that of any clinical iodinated contrast agent (CA) at the same concentration. Our findings suggest that the Bi@US-tubes can be used as a potential new class of X-ray CT agent for stem cell labeling and possibly in vivo tracking.

Biomaterials ; 33(5): 1455-61, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22078812


The use of chemotherapeutic drugs in cancer therapy is often limited by problems with administration such as insolubility, inefficient biodistribution, lack of selectivity, and inability of the drug to cross cellular barriers. To overcome these limitations, various types of drug delivery systems have been explored, and recently, carbon nanotube (CNT) materials have also garnered attention in the area of drug delivery. In this study, we describe the preparation, characterization, and in vitro testing of a new ultra-short single-walled carbon nanotube (US-tube)-based drug delivery system for the treatment of cancer. In particular, the encapsulation of cisplatin (CDDP), a widely-used anticancer drug, within US-tubes has been achieved, and the resulting CDDP@US-tube material characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively-coupled optical emission spectrometry (ICP-OES). Dialysis studies performed in phosphate-buffered saline (PBS) at 37 °C have demonstrated that CDDP release from CDDP@US-tubes can be controlled (retarded) by wrapping the CDDP@US-tubes with Pluronic-F108 surfactant. Finally, the anticancer activity of pluronic-wrapped CDDP@US-tubes has been evaluated against two different breast cancer cell lines, MCF-7 and MDA-MB-231, and found to exhibit enhanced cytotoxicity over free CDDP after 24 h. These studies have laid the foundation for developing US-tube-based delivery of chemotherapeutics, with drug release mainly limited to within cancer cells only.

Cisplatino/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanocápsulas/química , Nanotubos de Carbono/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanocápsulas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Espectroscopia Fotoeletrônica , Platina/análise , Solventes/química , Espectrofotometria Atômica , Fatores de Tempo