Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Nat Commun ; 12(1): 2479, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931635

RESUMO

The performance of perovskite photovoltaics is fundamentally impeded by the presence of undesirable defects that contribute to non-radiative losses within the devices. Although mitigating these losses has been extensively reported by numerous passivation strategies, a detailed understanding of loss origins within the devices remains elusive. Here, we demonstrate that the defect capturing probability estimated by the capture cross-section is decreased by varying the dielectric response, producing the dielectric screening effect in the perovskite. The resulting perovskites also show reduced surface recombination and a weaker electron-phonon coupling. All of these boost the power conversion efficiency to 22.3% for an inverted perovskite photovoltaic device with a high open-circuit voltage of 1.25 V and a low voltage deficit of 0.37 V (a bandgap ~1.62 eV). Our results provide not only an in-depth understanding of the carrier capture processes in perovskites, but also a promising pathway for realizing highly efficient devices via dielectric regulation.

2.
Nature ; 592(7855): 558-563, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33883730

RESUMO

Successfully interfacing enzymes and biomachinery with polymers affords on-demand modification and/or programmable degradation during the manufacture, utilization and disposal of plastics, but requires controlled biocatalysis in solid matrices with macromolecular substrates1-7. Embedding enzyme microparticles speeds up polyester degradation, but compromises host properties and unintentionally accelerates the formation of microplastics with partial polymer degradation6,8,9. Here we show that by nanoscopically dispersing enzymes with deep active sites, semi-crystalline polyesters can be degraded primarily via chain-end-mediated processive depolymerization with programmable latency and material integrity, akin to polyadenylation-induced messenger RNA decay10. It is also feasible to achieve processivity with enzymes that have surface-exposed active sites by engineering enzyme-protectant-polymer complexes. Poly(caprolactone) and poly(lactic acid) containing less than 2 weight per cent enzymes are depolymerized in days, with up to 98 per cent polymer-to-small-molecule conversion in standard soil composts and household tap water, completely eliminating current needs to separate and landfill their products in compost facilities. Furthermore, oxidases embedded in polyolefins retain their activities. However, hydrocarbon polymers do not closely associate with enzymes, as their polyester counterparts do, and the reactive radicals that are generated cannot chemically modify the macromolecular host. This study provides molecular guidance towards enzyme-polymer pairing and the selection of enzyme protectants to modulate substrate selectivity and optimize biocatalytic pathways. The results also highlight the need for in-depth research in solid-state enzymology, especially in multi-step enzymatic cascades, to tackle chemically dormant substrates without creating secondary environmental contamination and/or biosafety concerns.

3.
J Am Chem Soc ; 143(10): 3719-3722, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33656883

RESUMO

Using host-guest chemistries in a biphasic system, a novel supramolecular nanoparticle surfactant (s-NPS) with redox-responsiveness is presented to structure liquids. The in situ assembly/jamming and disassembly/unjamming of s-NPSs at the oil-water interface are reversibly controlled by a switchable redox process, imparting a nanoscale redox-responsiveness, affecting the assemblies on all length scales. "Smart" all-liquid constructs including structured emulsions and programmable liquid devices are easily prepared, showing promising applications in responsive delivery, release, and reaction systems.

4.
Macromol Rapid Commun ; 42(9): e2100023, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33738892

RESUMO

The reaction of amine-terminated polystyrene (PS-NH2 ) with an epoxy-based dynamic polymer networks (DPNs) above the topology freezing transition temperature of the DPN, results in the disruption of the network by the formation of graft copolymers at the interface between the linear homopolymer and the network. The rate of the disruption decreases with annealing time and is strongly dependent on the molecular weight of the PS-NH2 , with the lower molecular weight PS-NH2 reacting much more rapidly than the higher molecular weight PS-NH2 . A higher catalyst concentration in the DPN also promotes the interfacial reaction, indicating a reaction-rate-controlled process.

5.
Adv Mater ; : e2007177, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742493

RESUMO

The intrinsic electronic properties of donor (D) and acceptor (A) materials in coupling with morphological features dictate the output in organic solar cells (OSCs). New physical properties of intimate eutectic mixing are used in nonfullerene-acceptor-based D-A1 -A2 ternary blends to fine-tune the bulk heterojunction thin film morphology as well as their electronic properties. With enhanced thin film crystallinity and improved carrier transport, a significant JSC amplification is achieved due to the formation of eutectic fibrillar lamellae and reduced defects state density. Material wise, aligned cascading energy levels with much larger driving force, and suppressed recombination channels confirm efficient charge transfer and transport, enabling an improved power conversion efficiency (PCE) of 17.84%. These results reveal the importance of utilizing specific material interactions to control the crystalline habit in blended films to form a well-suited morphology in guiding superior performances, which is of high demand in the next episode of OSC fabrication toward 20% PCE.

6.
Biomacromolecules ; 22(3): 1305-1311, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33591727

RESUMO

Protein-based electronic biomaterials represent an attractive alternative to traditional metallic and semiconductor materials due to their environmentally benign production and purification. However, major challenges hindering further development of these materials include (1) limitations associated with processing proteins in organic solvents and (2) difficulties in forming higher-order structures or scaffolds with multilength scale control. This paper addresses both challenges, resulting in the formation of one-dimensional bundles composed of electrically conductive protein nanowires harvested from the microbes Geobacter sulfurreducens and Escherichia coli. Processing these bionanowires from common organic solvents, such as hexane, cyclohexane, and DMF, enabled the production of multilength scale structures composed of distinctly visible pili. Transmission electron microscopy revealed striking images of bundled protein nanowires up to 10 µm in length and with widths ranging from 50-500 nm (representing assembly of tens to hundreds of nanowires). Conductive atomic force microscopy confirmed the presence of an appreciable nanowire conductivity in their bundled state. These results greatly expand the possibilities for fabricating a diverse array of protein nanowire-based electronic device architectures.

7.
Proc Natl Acad Sci U S A ; 118(8)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602813

RESUMO

The assembly and jamming of magnetic nanoparticles (NPs) at liquid-liquid interfaces is a versatile platform to endow structured liquid droplets with a magnetization, i.e., producing ferromagnetic liquid droplets (FMLDs). Here, we use hydrodynamics experiments to probe how the magnetization of FMLDs and their response to external stimuli can be tuned by chemical, structural, and magnetic means. The remanent magnetization stems from magnetic NPs jammed at the liquid-liquid interface and dispersed NPs magneto-statically coupled to the interface. FMLDs form even at low concentrations of magnetic NPs when mixing nonmagnetic and magnetic NPs, since the underlying magnetic dipole-driven clustering of magnetic NP-surfactants at the interface produces local magnetic properties, similar to those found with pure magnetic NP solutions. While the net magnetization is smaller, such a clustering of NPs may enable structured liquids with heterogeneous surfaces.

8.
Adv Mater ; 33(7): e2006435, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33393159

RESUMO

Understanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non-exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift-off strategy. By establishing the microstructure-property relations, the basic losses at the contact interfaces are systematically presented, and it is found that the buried interface losses induced by both the sub-microscale extended imperfections and lead-halide inhomogeneities are major roadblocks toward improvement of device performance. The losses can be considerably mitigated by the use of a passivation-molecule-assisted microstructural reconstruction, which unlocks the full potential for improving device performance. The findings open a new avenue to understanding performance losses and thus the design of new passivation strategies to remove imperfections at the top surfaces and buried interfaces of perovskite photovoltaics, resulting in substantial enhancement in device performance.

9.
Angew Chem Int Ed Engl ; 60(16): 8694-8699, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33491263

RESUMO

With the interfacial jamming of nanoparticles (NPs), a load-bearing network of NPs forms as the areal density of NPs increases, converting the assembly from a liquid-like into a solid-like assembly. Unlike vitrification, the lineal packing of the NPs in the network is denser, while the remaining NPs can remain in a liquid-like state. It is a challenge to determine the point at which the assemblies jam, since both jamming and vitrification lead to a solid-like behavior of the assemblies. Herein, we show a real-time fluorescence imaging method to probe the evolution of the interfacial dynamics of NP surfactants at the water/oil interface using aggregation-induced emission (AIE) as a reporter for the transition of the assemblies into the jammed state. The AIEgens show typical fluorescence behavior at densities at which they can move and rotate. However, when aggregation of these fluorophores occurs, the smaller intermolecular separation distance arrests rotation, and a significant enhancement in the fluorescence intensity occurs.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33284573

RESUMO

This paper describes a correlation between charge extraction and energy-level alignment at the interface of polymeric hole transport layers and perovskite active layers. By tailoring the composition of the conjugated backbone of the hole transport material, energy levels between perovskites and hole transport layers are varied. Matching the band alignment at perovskite/hole transport interfaces dramatically improved charge extraction and thus device performance. Time-resolved microwave conductivity measurements, performed to elucidate hole transfer kinetics, suggest that hole transport layer energy levels greatly influence hole extraction efficiency at this interface, a finding that agrees well with device performance metrics. Furthermore, photoluminescence, Mott-Schottky, and space charge limited current measurements support that energy-level alignment between the hole transport layer and perovskite active layer enables more efficient hole extraction and transport at the device interface. The insight surrounding hole extraction in inverted perovskite devices will help design effective hole transport materials, which, in turn, facilitates the production of more efficient solar cells.

11.
ACS Appl Mater Interfaces ; 12(49): 55426-55433, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33228355

RESUMO

The assembly and binding of nanoparticles at the interfaces of aqueous two-phase systems enable the three-dimensional (3D) printing of all-aqueous naturally occurring materials. When a dispersion of cellulose nanocrystals (CNCs) in an aqueous solution of polyethylene glycol (PEG) is brought into contact with chitosan dissolved in an aqueous solution of dextran, the CNCs and chitosan diffuse to the interface between the two immiscible aqueous solutions, electrostatically interact, and form a solid, membranous layer sufficiently rapidly to 3D print tubules of one liquid in the other. The diameter, length, spatial arrangement, and stability of the printed tubules can be broadly controlled. Adsorption and directional diffusion of ionic species across the membranous layer make heavy metal ion removal possible. The results present a platform for fabricating and developing all-aqueous compartmentalized systems where function can be independently coupled to the inherent functionality of the nanoparticles or ligands.

12.
Sci Adv ; 6(48)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33239289

RESUMO

Electrostatic interactions between nanoparticles (NPs) and functionalized ligands lead to the formation of NP surfactants (NPSs) that assemble at the water-oil interface and form jammed structures. To understand the interfacial behavior of NPSs, it is necessary to understand the mechanism by which the NPSs attach to the interface and how this attachment depends on the areal coverage of the interface. Through direct observation with high spatial and temporal resolution, using laser scanning confocal microscopy and in situ atomic force microscopy (AFM), we observe that early-stage attachment of NPs to the interface is diffusion limited and with increasing areal density of the NPSs, further attachment requires cooperative displacement of the previously assembled NPSs both laterally and vertically. The unprecedented detail provided by in situ AFM reveals the complex mechanism of attachment and the deeply nonequilibrium nature of the assembly.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33200916

RESUMO

We report a "one-step" method for preparing conductive thin films with cylindrical microdomains oriented normal to the surface over large areas using the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS19-b-P4VP5) and 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine (HOTPP). HOTPP interacts with the P4VP block by hydrogen bonding between the hydroxyl group of HOTPP and pyridine ring of PS19-b-P4VP5, forming cylindrical P4VP(HOTPP) domains having an average diameter of ∼17 nm in a PS matrix. Dynamic light scattering, contact angle, and in situ grazing incidence small-angle X-ray scattering measurements show a morphological transition from spherical micelles in solution to cylindrical microdomains oriented normal to the substrate surface during the drying process. From the dependence of current on voltage, an average current of ∼4.0 nA is found to pass through a single microdomain, pointing to a promising route for organic semiconductor device applications.

14.
J Am Chem Soc ; 142(47): 20124-20133, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170682

RESUMO

We designed and synthesized a series of fused-ring electron acceptors (FREAs) based on naphthalene-fused octacyclic cores end-capped by 3-(1,1-dicyanomethylene)-5,6-difluoro-1- indanone (NOICs) using a bottom-up approach. The NOIC series shares the same end groups and side chains, as well as similar fused-ring cores. The butterfly effects, arising from different methoxy positions in the starting materials, impact the design of the final FREAs, as well as their molecular packing, optical and electronic properties, charge transport, film morphology, and performance of organic solar cells. The binary-blend devices based on this NOIC series show power conversion efficiencies varying from 7.15% to 14.1%, due to the different intrinsic properties of the NOIC series, morphologies of blend films, and voltage losses of devices.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33210413

RESUMO

Granular materials, composed of densely packed particles, are known to possess unique mechanical properties that are highly dependent on the surface structure of the particles. A microscopic understanding of the structure-property relationship in these systems remains unclear. Here, supra-nanoparticle clusters (SNPCs) with precise structures are developed as model systems to elucidate the structure-property relationship. SNPCs are prepared by coordination-driven assembly of polyhedral oligomeric silsesquioxane (POSS) with metal-organic polyhedron. Due to the disparity in sizes, the POSS-MOP assemblies, like their classic nanoparticles counterparts, ordering is suppressed, and the POSS-MOP mixtures will vitrify or jam as a function of decreasing temperature. An unexpected elasticity is observed for the SNPC assemblies with a high modulus that is maintained at temperatures far beyond the glass transition temperature. From studies on the dynamics of the hierarchical structures of SNPCs and molecular dynamic simulation, the elasticity has its origins in the interpenetration of POSS-ended arms. The physical molecular interpenetration and inter-locking phenomenon favors the convenient solution or pressing processing of the novel cluster-based elastomers.

16.
Artigo em Inglês | MEDLINE | ID: mdl-33111473

RESUMO

Locking nonequilibrium shapes of liquids into targeted architectures by interfacial jamming of nanoparticles is an emerging area in material science. 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (H6 TPPS) shows three different aggregation states that present an absorption imaging platform to monitor the assembly and jamming of supramolecular polymer surfactants (SPSs) at the liquid/liquid interface. The interfacial interconversion of H6 TPPS, specifically H4 TPPS2- dissolved in water, from J- to an H-aggregation was induced by strong electrostatic interactions with amine-terminated polystyrene dissolved in toluene at the water/toluene interface. This resulted in color-tunable liquids due to interfacial jamming of the SPSs formed between H4 TPPS2- and amine-terminated polystyrene. However, the formed SPSs cannot lock in nonequilibrium shapes of liquids. In addition, a self-wrinkling behavior was observed when amphiphilic triblock copolymers of PS-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) were used to interact with H4 TPPS2- . Subsequently, the SPSs formed can lock in nonequilibrium shapes of liquids.

17.
ACS Nano ; 14(8): 10589-10599, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806023

RESUMO

Jammed packings of bidisperse nanospheres were assembled on a nonvolatile liquid surface and visualized to the single-particle scale by using an in situ scanning electron microscopy method. The PEGylated silica nanospheres, mixed at different number fractions and size ratios, had large enough in-plane mobilities prior to jamming to form uniform monolayers reproducibly. From the collected nanometer-resolution images, local order and degree of mixing were assessed by standard metrics. For equimolar mixtures, a large-to-small size ratio of about 1.5 minimized correlated metrics for local orientational and positional order, as previously predicted in simulations of bidisperse disk jamming. Despite monolayer uniformity, structural and depletion interactions caused spheres of a similar size to cluster, a feature evident at size ratios above 2. Uniform nanoparticle monolayers of high packing disorder are sought in many liquid interface technologies, and these experiments outlined key design principles, buttressing extensive theory/simulation literature on the topic.

18.
Materials (Basel) ; 13(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549201

RESUMO

Mechanical jamming of nanoparticles at liquid-liquid interfaces has evolved into a versatile approach to structure liquids with solid-state properties. Ferromagnetic liquids obtain their physical and magnetic properties, including a remanent magnetization that distinguishes them from ferrofluids, from the jamming of magnetic nanoparticles assembled at the interface between two distinct liquids to minimize surface tension. This perspective provides an overview of recent progress and discusses future directions, challenges and potential applications of jamming magnetic nanoparticles with regard to 3D nano-magnetism. We address the formation and characterization of curved magnetic geometries, and spin frustration between dipole-coupled nanostructures, and advance our understanding of particle jamming at liquid-liquid interfaces.

19.
Angew Chem Int Ed Engl ; 59(41): 18131-18135, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32558039

RESUMO

Self-doping ionene polymers were efficiently synthesized by reacting functional naphthalene diimide (NDI) with 1,3-dibromopropane (NDI-NI) or trans-1,4-dibromo-2-butene (NDI-CI) via quaternization polymerization. These NDI-based ionene polymers are universal interlayers with random molecular orientation, boosting the efficiencies of fullerene-based, non-fullerene-based, and ternary organic solar cells (OSCs) over a wide range of interlayer thicknesses, with a maximum efficiency of 16.9 %. NDI-NI showed a higher interfacial dipole (Δ), conductivity, and electron mobility than NDI-CI, affording solar cells with higher efficiencies. These polymers proved to efficiently lower the work function (WF) of air-stable metals and optimize the contact between metal electrode and organic semiconductor, highlighting their power to overcome energy barriers of electron injection and extraction processes for efficient organic electronics.

20.
Adv Mater ; 32(32): e1906129, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32583916

RESUMO

With developments in materials, thin-film processing, fine-tuning of morphology, and optimization of device fabrication, the performance of organic solar cells (OSCs) has improved markedly in recent years. Designing low-bandgap materials has been a focus in order to maximize solar energy conversion. However, there are only a few successful low-bandgap donor materials developed with near-infrared (NIR) absorption that are well matched to the existing efficient acceptors. Porphyrin has shown great potential as a useful building block for constructing low-bandgap donor materials due to its large conjugated plane and strong absorption. Porphyrin-based donor materials have been shown to contribute to many record-high device efficiencies in small molecule, tandem, ternary, flexible, and OSC/perovskite hybrid solar cells. Specifically, non-fullerene small-molecule solar cells have recently shown a high power conversion efficiency of 12% using low-bandgap porphyrin. All these have validated the great potential of porphyrin derivatives as effective donor materials and made DPPEZnP-TRs a family of best low-bandgap donor materials in the OSC field so far. Here, recent progress in the rational design, morphology, dynamics, and multi-functional applications starting from 2015 will be highlighted to deepen understanding of the structure-property relationship. Finally, some future directions of porphyrin-based OSCs are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...