Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210000

RESUMO

Atherosclerotic cardiovascular disease is the major cause of morbidity and mortality in patients with type 1 diabetes mellitus (T1DM). Enhanced platelet reactivity is considered a main determinant of the increased atherothrombotic risk of diabetic patients. Thrombopoietin (THPO), a humoral growth factor able to stimulate megakaryocyte proliferation and differentiation, also modulates the response of mature platelets by enhancing both activation and binding to leukocytes in response to different agonists. Increased THPO levels have been reported in different clinical conditions characterized by a generalized pro-thrombotic state, from acute coronary syndromes to sepsis/septic shock, and associated with elevated indices of platelet activation. To investigate the potential contribution of elevated THPO levels in platelet activation in T1DM patients, we studied 28 T1DM patients and 28 healthy subjects. We measured plasma levels of THPO, as well as platelet-leukocyte binding, P-selectin, and THPO receptor (THPOR) platelet expression. The priming activity of plasma from diabetic patients or healthy subjects on platelet-leukocyte binding and the role of THPO on this effect was also studied in vitro. T1DM patients had higher circulating THPO levels and increased platelet-monocyte and platelet-granulocyte binding, as well as platelet P-selectin expression, compared to healthy subjects, whereas platelet expression of THPOR did not differ between the two groups. THPO concentrations correlated with platelet-leukocyte binding, as well as with fasting glucose and Hb1Ac. In vitro, plasma from diabetic patients, but not from healthy subjects, primed platelet-leukocyte binding and platelet P-selectin expression. Blocking THPO biological activity using a specific inhibitor prevented the priming effect induced by plasma from diabetic patients. In conclusion, augmented THPO may enhance platelet activation in patients with T1DM, potentially participating in increasing atherosclerotic risk.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Receptores de Trombopoetina/sangue , Trombopoetina/sangue , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Monócitos/metabolismo , Selectina-P/sangue , Ativação Plaquetária , Contagem de Plaquetas , Adulto Jovem
2.
Int J Mol Sci ; 22(13)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34281247

RESUMO

Background: Proprotein convertase subtilisin kexin type 9 inhibitors (PCSK9i) lower LDL-cholesterol and slow atherosclerosis preventing cardiovascular events. While it is known that circulating PCSK9 enhances platelet activation (PA) and that PCSK9i reduce it, the underlying mechanism is not still clarified. Methods: In a multicenter before-after study in 80 heterozygous familial hypercholesterolemia (HeFH) patients on treatment with maximum tolerated statin dose ± ezetimibe, PA, soluble-NOX2-derived peptide (sNOX2-dp), and oxidized-LDL (ox-LDL) were measured before and after six months of PCSK9i treatment. In vitro study investigates the effects of plasma from HeFH patients before and after PCK9i on PA in washed platelets (wPLTs) from healthy subjects. Results: Compared to baseline, PCSK9i reduced the serum levels of LDL-c, ox-LDL, Thromboxane (Tx) B2, sNOX2-dp, and PCSK9 (p < 0.001). The decrease of TxB2 correlates with that of ox-LDL, while ox-LDL reduction correlated with PCSK9 and sNOX2-dp delta. In vitro study demonstrated that wPLTs resuspended in plasma from HeFH after PCSK9i treatment induced lower PA and sNOX2-dp release than those obtained using plasma before PCSK9i treatment. This reduction was vanished by adding ox-LDL. ox-LDL-induced PA was blunted by CD36, LOX1, and NOX2 inhibition. Conclusions: PCSK9i treatment reduces PA modulating NOX2 activity and in turn ox-LDL formation in HeFH patients.


Assuntos
Hiperlipoproteinemia Tipo II/tratamento farmacológico , Ativação Plaquetária/efeitos dos fármacos , Pró-Proteína Convertase 9/antagonistas & inibidores , Pró-Proteína Convertase 9/metabolismo , Adulto , Idoso , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticolesterolemiantes/efeitos adversos , LDL-Colesterol/análise , LDL-Colesterol/sangue , Ezetimiba/uso terapêutico , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipoproteinemia Tipo II/genética , Itália , Lipoproteínas LDL/análise , Lipoproteínas LDL/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Masculino , Pessoa de Meia-Idade , NADPH Oxidase 2/análise , NADPH Oxidase 2/sangue , Pró-Proteína Convertase 9/genética
3.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070931

RESUMO

It is now about 20 years since the first case of a gain-of-function mutation involving the as-yet-unknown actor in cholesterol homeostasis, proprotein convertase subtilisin/kexin type 9 (PCSK9), was described. It was soon clear that this protein would have been of huge scientific and clinical value as a therapeutic strategy for dyslipidemia and atherosclerosis-associated cardiovascular disease (CVD) management. Indeed, PCSK9 is a serine protease belonging to the proprotein convertase family, mainly produced by the liver, and essential for metabolism of LDL particles by inhibiting LDL receptor (LDLR) recirculation to the cell surface with the consequent upregulation of LDLR-dependent LDL-C levels. Beyond its effects on LDL metabolism, several studies revealed the existence of additional roles of PCSK9 in different stages of atherosclerosis, also for its ability to target other members of the LDLR family. PCSK9 from plasma and vascular cells can contribute to the development of atherosclerotic plaque and thrombosis by promoting platelet activation, leukocyte recruitment and clot formation, also through mechanisms not related to systemic lipid changes. These results further supported the value for the potential cardiovascular benefits of therapies based on PCSK9 inhibition. Actually, the passive immunization with anti-PCSK9 antibodies, evolocumab and alirocumab, is shown to be effective in dramatically reducing the LDL-C levels and attenuating CVD. While monoclonal antibodies sequester circulating PCSK9, inclisiran, a small interfering RNA, is a new drug that inhibits PCSK9 synthesis with the important advantage, compared with PCSK9 mAbs, to preserve its pharmacodynamic effects when administrated every 6 months. Here, we will focus on the major understandings related to PCSK9, from its discovery to its role in lipoprotein metabolism, involvement in atherothrombosis and a brief excursus on approved current therapies used to inhibit its action.


Assuntos
Aterosclerose/genética , LDL-Colesterol/metabolismo , Dislipidemias/genética , Placa Aterosclerótica/genética , Pró-Proteína Convertase 9/genética , Trombose/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/enzimologia , Aterosclerose/patologia , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Plaquetas/patologia , LDL-Colesterol/antagonistas & inibidores , Dislipidemias/tratamento farmacológico , Dislipidemias/enzimologia , Dislipidemias/patologia , Fibrinolíticos/uso terapêutico , Regulação da Expressão Gênica , Humanos , Hipolipemiantes/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/enzimologia , Placa Aterosclerótica/patologia , Ativação Plaquetária/efeitos dos fármacos , Pró-Proteína Convertase 9/antagonistas & inibidores , Pró-Proteína Convertase 9/biossíntese , RNA Interferente Pequeno/uso terapêutico , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Trombose/enzimologia , Trombose/patologia , Trombose/prevenção & controle
4.
Biochem Soc Trans ; 49(3): 1375-1384, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33960369

RESUMO

Missense mutations in the leucine-rich repeat kinase-2 (LRRK2) gene represent the most common cause of autosomal dominant Parkinson's disease (PD). In the years LRRK2 has been associated with several organelles and related pathways in cell. However, despite the significant amount of research done in the past decade, the contribution of LRRK2 mutations to PD pathogenesis remains unknown. Growing evidence highlights that LRRK2 controls multiple processes in brain immune cells, microglia and astrocytes, and suggests that deregulated LRRK2 activity in these cells, due to gene mutation, might be directly associated with pathological mechanisms underlying PD. In this brief review, we recapitulate and update the last LRRK2 functions dissected in microglia and astrocytes. Moreover, we discuss how dysfunctions of LRRK2-related pathways may impact glia physiology and their cross-talk with neurons, thus leading to neurodegeneration and progression of PD.

5.
Int J Sports Physiol Perform ; : 1-13, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044369

RESUMO

PURPOSE: This study aimed to determine the effects of an acute "train-low" nutritional protocol on markers of recovery optimization compared to standard recovery nutrition protocol. METHODS: After completing a 2-hour high-intensity interval running protocol, 8 male endurance athletes consumed a standard dairy milk recovery beverage (CHO; 1.2 g/kg body mass [BM] of carbohydrate and 0.4 g/kg BM of protein) and a low-carbohydrate (L-CHO; isovolumetric with 0.35 g/kg BM of carbohydrate and 0.5 g/kg BM of protein) dairy milk beverage in a double-blind randomized crossover design. Venous blood and breath samples, nude BM, body water, and gastrointestinal symptom measurements were collected preexercise and during recovery. Muscle biopsy was performed at 0 hour and 2 hours of recovery. Participants returned to the laboratory the following morning to measure energy substrate oxidation and perform a 1-hour distance test. RESULTS: The exercise protocol resulted in depletion of muscle glycogen stores (250 mmol/kg dry weight) and mild body-water losses (BM loss = 1.8%). Neither recovery beverage replenished muscle glycogen stores (279 mmol/kg dry weight) or prevented a decrease in bacterially stimulated neutrophil function (-21%). Both recovery beverages increased phosphorylation of mTORSer2448 (main effect of time = P < .001) and returned hydration status to baseline. A greater fold increase in p-GSK-3ßSer9/total-GSK-3ß occurred on CHO (P = .012). Blood glucose (P = .005) and insulin (P = .012) responses were significantly greater on CHO (618 mmol/L per 2 h and 3507 µIU/mL per 2 h, respectively) compared to L-CHO (559 mmol/L per 2 h and 1147 µIU/mL per 2 h, respectively). Rates of total fat oxidation were greater on CHO, but performance was not affected. CONCLUSION: A lower-carbohydrate recovery beverage consumed after exercise in a "train-low" nutritional protocol does not negatively impact recovery optimization outcomes.

6.
Front Physiol ; 12: 628863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613323

RESUMO

We compared the impact of two different, but commonly consumed, beverages on integrative markers of exercise recovery following a 2 h high intensity interval exercise (i.e., running 70-80% V̇O2 max intervals and interspersed with plyometric jumps). Participants (n = 11 males, n = 6 females) consumed a chocolate flavored dairy milk beverage (CM: 1.2 g carbohydrate/kg BM and 0.4 g protein/kg BM) or a carbohydrate-electrolyte beverage (CEB: isovolumetric with 0.76 g carbohydrate/kg BM) after exercise, in a randomized-crossover design. The recovery beverages were provided in three equal boluses over a 30 min period commencing 1 h post-exercise. Muscle biopsies were performed at 0 h and 2 h in recovery. Venous blood samples, nude BM and total body water were collected before and at 0, 2, and 4 h recovery. Gastrointestinal symptoms and breath hydrogen (H2) were collected before exercise and every 30 min during recovery. The following morning, participants returned for performance assessment. In recovery, breath H2 reached clinical relevance of >10 ppm following consumption of both beverages, in adjunct with high incidence of gastrointestinal symptoms (70%), but modest severity. Blood glucose response was greater on CEB vs. CM (P < 0.01). Insulin response was greater on CM compared with CEB (P < 0.01). Escherichia coli lipopolysaccharide stimulated neutrophil function reduced on both beverages (49%). p-GSK-3ß/total-GSK-3ß was greater on CM compared with CEB (P = 0.037); however, neither beverage achieved net muscle glycogen re-storage. Phosphorylation of mTOR was greater on CM than CEB (P < 0.001). Fluid retention was lower (P = 0.038) on CEB (74.3%) compared with CM (82.1%). Physiological and performance outcomes on the following day did not differ between trials. Interconnected recovery optimization markers appear to respond differently to the nutrient composition of recovery nutrition, albeit subtly and with individual variation. The present findings expand on recovery nutrition strategies to target functionality and patency of the gastrointestinal tract as a prerequisite to assimilation of recovery nutrition, as well as restoration of immunocompetency.

7.
Glia ; 69(3): 681-696, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33045109

RESUMO

The progressive neuropathological damage seen in Parkinson's disease (PD) is thought to be related to the spreading of aggregated forms of α-synuclein. Clearance of extracellular α-synuclein released by degenerating neurons may be therefore a key mechanism to control the concentration of α-synuclein in the extracellular space. Several molecular chaperones control misfolded protein accumulation in the extracellular compartment. Among these, clusterin, a glycoprotein associated with Alzheimer's disease, binds α-synuclein aggregated species and is present in Lewy bodies, intraneuronal aggregates mainly composed by fibrillary α-synuclein. In this study, using murine primary astrocytes with clusterin genetic deletion, human-induced pluripotent stem cell (iPSC)-derived astrocytes with clusterin silencing and two animal models relevant for PD we explore how clusterin affects the clearance of α-synuclein aggregates by astrocytes. Our findings showed that astrocytes take up α-synuclein preformed fibrils (pffs) through dynamin-dependent endocytosis and that clusterin levels are modulated in the culture media of cells upon α-synuclein pffs exposure. Specifically, we found that clusterin interacts with α-synuclein pffs in the extracellular compartment and the clusterin/α-synuclein complex can be internalized by astrocytes. Mechanistically, using clusterin knock-out primary astrocytes and clusterin knock-down hiPSC-derived astrocytes we observed that clusterin limits the uptake of α-synuclein pffs by cells. Interestingly, we detected increased levels of clusterin in the adeno-associated virus- and the α-synuclein pffs- injected mouse model, suggesting a crucial role of this chaperone in the pathogenesis of PD. Overall, our observations indicate that clusterin can limit the uptake of extracellular α-synuclein aggregates by astrocytes and, hence, contribute to the spreading of Parkinson pathology.

8.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003328

RESUMO

Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by the presence of proteinaceous aggregates of αSynuclein (αSyn) in the dopaminergic neurons. Chaperones are key components of the proteostasis network that are able to counteract αSyn's aggregation, as well as its toxic effects. Clusterin (CLU), a molecular chaperone, was consistently found to interfere with Aß aggregation in Alzheimer's Disease (AD). However, its role in PD pathogenesis has yet to be extensively investigated. In this study, we assessed the involvement of CLU in the αSyn aggregation process by using SH-SY5Y cells stably overexpressing αSyn (SH-Syn). First, we showed that αSyn overexpression caused a strong increase in CLU expression without affecting levels of Hsp27, Hsp70, and Hsp90, which are the chaperones widely recognized to counteract αSyn burden. Then, we demonstrated that αSyn aggregation, induced by proteasome inhibition, determines a strong increase of CLU in insoluble aggregates. Remarkably, we revealed that CLU down-regulation results in an increase of αSyn aggregates in SH-Syn without significantly affecting cell viability and the Unfolded Protein Response (UPR). Furthermore, we demonstrated the direct molecular interaction between CLU and αSyn via a co-immunoprecipitation (co-IP) assay. All together, these findings provide incontrovertible evidence that CLU is an important player in the response orchestrated by the cell to cope with αSyn burden.


Assuntos
Clusterina/genética , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , Peptídeos beta-Amiloides/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/patologia , Resposta a Proteínas não Dobradas/genética
9.
Oxid Med Cell Longev ; 2020: 9219825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832010

RESUMO

Inhibition of either P2Y12 receptor or the nucleotide-binding oligomerization domain- (NOD-) like receptor pyrin domain containing 3 (NLRP3) inflammasome provides cardioprotective effects. Here, we investigate whether direct NLRP3 inflammasome inhibition exerts additive effects on myocardial protection induced by the P2Y12 receptor antagonist Ticagrelor. Ticagrelor (150 mg/kg) was orally administered to rats for three consecutive days. Then, isolated hearts underwent an ischemia/reperfusion (30 min ischemia/60 min reperfusion; IR) protocol. The selective NLRP3 inflammasome inhibitor INF (50 µM) was infused before the IR protocol to the hearts from untreated animals or pretreated with Ticagrelor. In parallel experiments, the hearts isolated from untreated animals were perfused with Ticagrelor (3.70 µM) before ischemia and subjected to IR. The hearts of animals pretreated with Ticagrelor showed a significantly reduced infarct size (IS, 49 ± 3% of area at risk, AAR) when compared to control IR group (69 ± 2% of AAR). Similarly, ex vivo administration of INF before the IR injury resulted in significant IS reduction (38 ± 3% of AAR). Myocardial IR induced the NLRP3 inflammasome complex formation, which was attenuated by either INF pretreatment ex vivo, or by repeated oral treatment with Ticagrelor. The beneficial effects induced by either treatment were associated with the protective Reperfusion Injury Salvage Kinase (RISK) pathway activation and redox defence upregulation. In contrast, no protective effects nor NLRP3/RISK modulation were recorded when Ticagrelor was administered before ischemia in isolated heart, indicating that Ticagrelor direct target is not in the myocardium. Our results confirm that Ticagrelor conditioning effects are likely mediated through platelets, but are not additives to the ones achieved by directly inhibiting NLRP3.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inibidores da Agregação Plaquetária/uso terapêutico , Ticagrelor/uso terapêutico , Animais , Humanos , Masculino , Oxirredução , Inibidores da Agregação Plaquetária/farmacologia , Ratos , Ratos Wistar , Ticagrelor/farmacologia
10.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679712

RESUMO

Platelet hyperactivation is involved in the established prothrombotic condition of metabolic diseases such as Type 2 Diabetes Mellitus (T2DM) and familial hypercholesterolemia (HC), justifying the therapy with aspirin, a suppressor of thromboxane synthesis through the irreversible inhibition of cyclooxygenase-1 (COX-1), to prevent cardiovascular diseases. However, some patients on aspirin show a higher than expected platelet reactivity due, at least in part, to a pro-oxidant milieu. The aim of this study was to investigate platelet reactivity in T2DM (n = 103) or HC (n = 61) patients (aspirin, 100 mg/day) and its correlation with biomarkers of redox function including the superoxide anion scavenger superoxide dismutase (SOD) and the in vivo marker of oxidative stress urinary 8-iso-prostaglandin F2α. As results, in T2DM and HC subjects the prevalence of high on-aspirin platelet reactivity was comparable when both non-COX-1-dependent and COX-1-dependent assays were performed, and platelet reactivity is associated with a lower SOD activity that in a stepwise linear regression appears as the only predictor of platelet reactivity. To conclude, in T2DM and HC, similarly, the impairment of redox equilibrium associated with a decrease of SOD activity could contribute to a suboptimal response to aspirin.


Assuntos
Aspirina/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Hipercolesterolemia/complicações , Inibidores da Agregação Plaquetária/uso terapêutico , Superóxido Dismutase/metabolismo , Trombose/prevenção & controle , Idoso , Aspirina/administração & dosagem , Plaquetas/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/administração & dosagem , Inibidores de Ciclo-Oxigenase/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Hipercolesterolemia/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Inibidores da Agregação Plaquetária/administração & dosagem , Trombose/etiologia , Trombose/metabolismo , Tromboxanos/metabolismo
11.
Int J Sport Nutr Exerc Metab ; 30(4): 237-248, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32460239

RESUMO

The study aimed to determine the impact of a dairy milk recovery beverage immediately after endurance exercise on leukocyte trafficking, neutrophil function, and gastrointestinal tolerance markers during recovery. Male runners (N = 11) completed two feeding trials in randomized order, after 2 hr of running at 70% V˙O2max, fluid restricted, in temperate conditions (25 °C, 43% relative humidity). Immediately postexercise, the participants received a chocolate-flavored dairy milk beverage equating to 1.2 g/kg body mass carbohydrate and 0.4 g/kg body mass protein in one trial, and water volume equivalent in another trial. Venous blood and breath samples were collected preexercise, postexercise, and during recovery to determine the leukocyte counts, plasma intestinal fatty acid binding protein, and cortisol concentrations, as well as breath H2. In addition, 1,000 µl of whole blood was incubated with 1 µg/ml Escherichia coli lipopolysaccharide for 1 hr at 37 °C to determine the stimulated plasma elastase concentration. Gastrointestinal symptoms and feeding tolerance markers were measured preexercise, every 15 min during exercise, and hourly postexercise for 3 hr. The postexercise leukocyte (mean [95% confidence interval]: 12.7 [11.6, 14.0] × 109/L [main effect of time, MEOT]; p < .001) and neutrophil (10.2 [9.1, 11.5] × 109/L; p < .001) counts, as well as the plasma intestinal fatty acid binding protein (470 pg/ml; +120%; p = .012) and cortisol (236 nMol/L; +71%; p = .006) concentrations, were similar throughout recovery for both trials. No significant difference in breath H2 and gastrointestinal symptoms was observed between trials. The total (Trial × Time, p = .025) and per cell (Trial × Time, p = .001) bacterially stimulated neutrophil elastase release was greater for the chocolate-flavored dairy milk recovery beverage (+360% and +28%, respectively) in recovery, compared with the water trial (+85% and -38%, respectively). Chocolate-flavored dairy milk recovery beverage consumption immediately after exercise prevents the decrease in neutrophil function during the recovery period, and it does not account for substantial malabsorption or gastrointestinal symptoms over a water volume equivalent.


Assuntos
Exercício Físico , Leite , Neutrófilos/fisiologia , Corrida , Adulto , Animais , Chocolate , Proteínas de Ligação a Ácido Graxo/sangue , Intolerância Alimentar , Humanos , Hidrocortisona , Elastase de Leucócito , Masculino
12.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963572

RESUMO

Platelets are key players in the thrombotic processes. The alterations of platelet function due to the occurrence of metabolic disorders contribute to an increased trend to thrombus formation and arterial occlusion, thus playing a major role in the increased risk of atherothrombotic events in patients with cardiometabolic risk factors. Several lines of evidence strongly correlate metabolic disorders such as obesity, a classical condition of insulin resistance, dyslipidemia, and impaired glucose homeostasis with cardiovascular diseases. The presence of these clinical features together with hypertension and disturbed microhemorrheology are responsible for the prothrombotic tendency due, at least partially, to platelet hyperaggregability and hyperactivation. A number of clinical platelet markers are elevated in obese and type 2 diabetes (T2DM) patients, including the mean platelet volume, circulating levels of platelet microparticles, oxidation products, platelet-derived soluble P-selectin and CD40L, thus contributing to an intersection between obesity, inflammation, and thrombosis. In subjects with insulin resistance and T2DM some defects depend on a reduced sensitivity to mediators-such as nitric oxide and prostacyclin-playing a physiological role in the control of platelet aggregability. Furthermore, other alterations occur only in relation to hyperglycemia. In this review, the main cardiometabolic risk factors, all components of metabolic syndrome involved in the prothrombotic tendency, will be taken into account considering some of the mechanisms involved in the alterations of platelet function resulting in platelet hyperactivation.


Assuntos
Plaquetas/fisiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/patologia , Síndrome Metabólica/complicações , Animais , Humanos , Fatores de Risco
13.
Nutr Metab Cardiovasc Dis ; 30(2): 282-291, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31653513

RESUMO

BACKGROUND AND AIMS: In the association between hypercholesterolemia (HC) and thrombotic risk platelet hyper-reactivity plays an important role. The inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) to reduce plasma LDL-cholesterol merges as effective therapeutic strategy to prevent cardiovascular (CV) events. Aim of this study was to verify whether a treatment up to 12 months with the monoclonal antibodies (mAbs) anti-PCSK9 influences platelet function in primary HC. METHODS AND RESULTS: In patients affected by primary HC (n = 24), all on background of statin and 17 on acetyl salicylic acid (ASA), platelet function parameters were evaluated at baseline up to 12 months of treatment with the mAb anti-PCSK9 alirocumab or evolocumab. From baseline, the treatment with anti-PCSK9 mAbs: i) in ASA HC patients, significantly decreased platelet aggregation detected in platelet-rich plasma by light transmission aggregometry and in whole blood Platelet Function Analyzer-100 assay; ii) in all HC patients, significantly decreased platelet membrane expression of CD62P and plasma levels of the in vivo platelet activation markers soluble CD40 Ligand, Platelet Factor-4, and soluble P-Selectin. Furthermore, CD62P expression, and sP-Selectin, PF-4, sCD40L levels significantly correlated with serum PCSK9. CONCLUSION: Besides markedly lowering LDL-c levels, our results suggest that HC patients benefit from anti-PCSK9 mAb treatment also for reducing platelet reactivity and increasing platelet sensitivity to the inhibitory effects of aspirin. These effects on platelets could play a role in the reduction of CV event incidence in patients treated with PCSK9 inhibitors.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Plaquetas/efeitos dos fármacos , Hipercolesterolemia/tratamento farmacológico , Inibidores da Agregação Plaquetária/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos , Pró-Proteína Convertase 9/antagonistas & inibidores , Inibidores de Serino Proteinase/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticolesterolemiantes/efeitos adversos , Biomarcadores/sangue , Plaquetas/metabolismo , Ligante de CD40/sangue , LDL-Colesterol/sangue , Feminino , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/enzimologia , Itália , Masculino , Pessoa de Meia-Idade , Selectina-P/sangue , Inibidores da Agregação Plaquetária/efeitos adversos , Fator Plaquetário 4/sangue , Pró-Proteína Convertase 9/sangue , Estudos Prospectivos , Inibidores de Serino Proteinase/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
14.
Front Nutr ; 7: 622270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521041

RESUMO

This study aimed to determine the effects of flavored dairy milk based recovery beverages of different nutrition compositions on markers of gastrointestinal and immune status, and subsequent recovery optimisation markers. After completing 2 h high intensity interval running, participants (n = 9) consumed a whole food dairy milk recovery beverage (CM, 1.2 g/kg body mass (BM) carbohydrate and 0.4 g/kg BM protein) or a dairy milk based supplement beverage (MBSB, 2.2 g/kg BM carbohydrate and 0.8 g/kg BM protein) in a randomized crossover design. Venous blood samples, body mass, body water, and breath samples were collected, and gastrointestinal symptoms (GIS) were measured, pre- and post-exercise, and during recovery. Muscle biopsies were performed at 0 and 2 h of recovery. The following morning, participants returned to the laboratory to assess performance outcomes. In the recovery period, carbohydrate malabsorption (breath H2 peak: 49 vs. 24 ppm) occurred on MBSB compared to CM, with a trend toward greater gut discomfort. No difference in gastrointestinal integrity (i.e., I-FABP and sCD14) or immune response (i.e., circulating leukocyte trafficking, bacterially-stimulated neutrophil degranulation, and systemic inflammatory profile) markers were observed between CM and MBSB. Neither trial achieved a positive rate of muscle glycogen resynthesis [-25.8 (35.5) mmol/kg dw/h]. Both trials increased phosphorylation of intramuscular signaling proteins. Greater fluid retention (total body water: 86.9 vs. 81.9%) occurred on MBSB compared to CM. Performance outcomes did not differ between trials. The greater nutrient composition of MBSB induced greater gastrointestinal functional disturbance, did not prevent the post-exercise reduction in neutrophil function, and did not support greater overall acute recovery.

15.
Cells ; 8(10)2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31614958

RESUMO

Nuclear-cytoplasmic shuttling is a highly regulated and complex process, which involves both proteins and nucleic acids. Changes in cellular compartmentalization of various proteins, including oncogenes and tumor suppressors, affect cellular behavior, promoting or inhibiting proliferation, apoptosis and sensitivity to therapies. In this review, we will recapitulate the role of various shuttling components in Chronic Myeloid Leukemia and we will provide insights on the potential role of shuttling proteins as therapeutic targets.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/fisiopatologia , Apoptose , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Humanos , Hidrazinas/farmacologia , Carioferinas/metabolismo , Sinais de Exportação Nuclear/fisiologia , Sinais de Localização Nuclear/metabolismo , Sinais de Localização Nuclear/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Triazóis/farmacologia
17.
J Neurochem ; 150(3): 264-281, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31148170

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain scaffolding protein with kinase and GTPase activities involved in synaptic vesicle (SV) dynamics. While its role in Parkinson's disease has been largely investigated, little is known about LRRK2 physiological role and until now few proteins have been described as substrates. We have previously demonstrated that LRRK2 through its WD40 domain interacts with synapsin I, an important SV-associated phosphoprotein involved in neuronal development and in the regulation of neurotransmitter release. To test whether synapsin I is substrate for LRRK2 and characterize the properties of its phosphorylation, we used in vitro kinase and binding assays as well as cellular model and site-direct mutagenesis. Using synaptosomes in superfusion, patch-clamp recordings in autaptic WT and synapsin I KO cortical neurons and SypHy assay on primary cortical culture from wild-type and BAC human LRRK2 G2019S mice we characterized the role of LRRK2 kinase activity on glutamate release and SV trafficking. Here we reported that synapsin I is phosphorylated by LRRK2 and demonstrated that the interaction between LRRK2 WD40 domain and synapsin I is crucial for this phosphorylation. Moreover, we showed that LRRK2 phosphorylation of synapsin I at threonine 337 and 339 significantly reduces synapsin I-SV/actin interactions. Using complementary experimental approaches, we demonstrated that LRRK2 controls glutamate release and SV dynamics in a kinase activity and synapsin I-dependent manner. Our findings show that synapsin I is a LRRK2 substrate and describe a novel mechanisms of regulation of glutamate release by LRRK2 kinase activity.


Assuntos
Ácido Glutâmico/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Sinapsinas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Encéfalo/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fosforilação , Vesículas Sinápticas/metabolismo
18.
Thromb Res ; 180: 74-85, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31229924

RESUMO

BACKGROUND: The incretin hormone Glucagon-like peptide 1(GLP-1) plays a pivotal role in maintaining glucose homeostasis with effects also on the cardiovascular system. GLP-1 influences platelet functions by increasing the inhibitory action of nitric oxide (NO) and reducing oxidative stress. To date, the role of hypercholesterolemia (HyC) on platelet GLP-1 effects needs to be elucidated. METHODS: Forty-five subjects with primary HyC and twenty normocholesterolemic controls (NoC) were enrolled. In platelets from all subjects, the native GLP-1 (7-36), the truncated GLP-1 (9-36) and the GLP-1 analogue Liraglutide were evaluated in their ability to interfere with the activation of NO/PKG/VASP, PI-3K/Akt e MAPK/ERK-1/2 pathways and oxidative stress. Furthermore, in HyC subjects the role of a lipid-lowering therapy with statin on GLP-1 related peptide effects on platelet function was evaluated. RESULTS: Unlike in NoC, in platelets from HyC subjects the GLP-1 related peptides GLP-1 (7-36), GLP-1 (9-36) and Liraglutide all failed to: i) increase the antiaggregating effects of NO and the NO-induced VASP-ser239 phosphorylation, ii) decrease phosphorylation levels of Akt and ERK-2 and iii) reduce reactive oxygen species (ROS) generation. The treatment with simvastatin (40 mg/die) in HyC (n = 18) significantly reduced total and LDL cholesterol levels, platelet aggregability/activation, ROS production and NO action but did not modify platelet sensitivity to the GLP-1 effects. CONCLUSION: Collectively, these results indicate that hypercholesterolemia per se is characterized by a resistance to GLP-1 effects on platelets and this impairment is not corrected by treatment with simvastatin.


Assuntos
Plaquetas/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipercolesterolemia/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Sinvastatina/uso terapêutico , Adulto , Plaquetas/metabolismo , Feminino , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Neurobiol Dis ; 129: 67-78, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31102768

RESUMO

Several previous studies have linked the Parkinson's disease (PD) gene LRRK2 to the biology of microglia cells. However, the precise ways in which LRRK2 affects microglial function have not been fully resolved. Here, we used the RNA-Sequencing to obtain transcriptomic profiles of LRRK2 wild-type (WT) and knock-out (KO) microglia cells treated with α-synuclein pre-formed fibrils (PFFs) or lipopolysaccharide (LPS) as a general inflammatory insult. We observed that, although α-synuclein PFFs and LPS mediate overlapping gene expression profiles in microglia, there are also distinct responses to each stimulus. α-Synuclein PFFs trigger alterations of oxidative stress-related pathways with the mitochondrial dismutase Sod2 as a strongly differentially regulated gene. We validated SOD2 at mRNA and protein levels. Furthermore, we found that LRRK2 KO microglia cells reported attenuated induction of mitochondrial SOD2 in response to α-synuclein PFFs, indicating a potential contribution of LRRK2 to oxidative stress-related pathways. We validate several genes in vivo using single-cell RNA-Seq from acutely isolated microglia after striatal injection of LPS into the mouse brain. Overall, these results suggest that microglial LRRK2 may contribute to the pathogenesis of PD via altered oxidative stress signaling.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Microglia/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/metabolismo , alfa-Sinucleína/toxicidade , Animais , Perfilação da Expressão Gênica , Humanos , Inflamação/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
20.
J Appl Physiol (1985) ; 126(5): 1281-1291, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30896356

RESUMO

It is commonly believed that gastrointestinal issues during exercise are exacerbated by hypohydration. This study aimed to determine the effect of exercise-induced hypohydration on gastrointestinal integrity, function, symptoms, and systemic endotoxin and inflammatory profiles. In a randomized crossover design, male endurance runners (n = 11) performed 2 h of running at 70% of maximum oxygen uptake in 25°C ambient temperature with water provision [euhydration (EuH)] and total water restriction [hypohydration (HypoH)] during running, which accounted for 0.6 ± 0.6% and 3.1 ± 0.7% body mass loss, respectively. Blood and fecal samples were collected before and after exercise. Breath samples (H2 determination) were collected and gastrointestinal symptoms (GIS) recorded before, during, and after exercise. HypoH resulted in a higher, yet insignificant, ∆ preexercise to postexercise plasma cortisol concentration (+286 nmol/l vs. +176 nmol/l; P = 0.098) but significantly higher intestinal fatty acid-binding protein (I-FABP) (+539 pg/ml vs. +371 pg/ml; P = 0.047) concentration compared with EuH. A greater breath H2 response (P = 0.026) was observed on HypoH (1,188 ppm/3 h, peak +12 ppm) vs. EuH (579 ppm/3 h, peak +6 ppm). Despite greater GIS incidence on HypoH (82%) vs. EuH (64%), GIS severity scores were not significant between trials. Exercise-induced leukocytosis (overall pre- to postexercise: 5.9 × 109/l to 12.1 × 109/l) was similar on both trials. Depressed in vitro neutrophil function was observed during recovery on HypoH (-36%) but not on EUH (+6%). A pre- to postexercise increase (P < 0.05) was observed for circulating cytokine concentrations but not endotoxin values. Hypohydration during 2 h of running modestly perturbs gastrointestinal integrity and function and increases GIS incidence but does not affect systemic endotoxemia and cytokinemia. NEW & NOTEWORTHY Despite anecdotal beliefs that exercise-induced hypohydration exacerbates perturbations to gastrointestinal status, the present study reports only modest perturbations in gastrointestinal integrity, function, and symptoms compared with euhydration maintenance. Exercise-induced hypohydration does not exacerbate systemic endotoxemia and cytokinemia compared with euhydration maintenance. Programmed water intake to maintain euhydration results in gastrointestinal symptom severity similar to exercise-induced hypohydration. Maintaining euhydration during exertional stress prevents the exercise-associated depression in bacterially stimulated neutrophil function.


Assuntos
Desidratação/fisiopatologia , Endotoxinas/metabolismo , Exercício Físico/fisiologia , Trato Gastrointestinal/fisiologia , Inflamação/fisiopatologia , Adulto , Líquidos Corporais/metabolismo , Temperatura Corporal/fisiologia , Estudos Cross-Over , Desidratação/metabolismo , Ingestão de Líquidos/fisiologia , Trato Gastrointestinal/metabolismo , Frequência Cardíaca/fisiologia , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/fisiologia , Inflamação/metabolismo , Masculino , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Corrida/fisiologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...