Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
PLoS One ; 15(2): e0228632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053653

RESUMO

OBJECTIVE: Some patients who are given opioids for pain could develop opioid use disorder. If it was possible to identify patients who are at a higher risk of opioid use disorder, then clinicians could spend more time educating these patients about the risks. We develop and validate a model to predict a person's future risk of opioid use disorder at the point before being dispensed their first opioid. METHODS: A cohort study patient-level prediction using four US claims databases with target populations ranging between 343,552 and 384,424 patients. The outcome was recorded diagnosis of opioid abuse, dependency or unspecified drug abuse as a proxy for opioid use disorder from 1 day until 365 days after the first opioid is dispensed. We trained a regularized logistic regression using candidate predictors consisting of demographics and any conditions, drugs, procedures or visits prior to the first opioid. We then selected the top predictors and created a simple 8 variable score model. RESULTS: We estimated the percentage of new users of opioids with reported opioid use disorder within a year to range between 0.04%-0.26% across US claims data. We developed an 8 variable Calculator of Risk for Opioid Use Disorder (CROUD) score, derived from the prediction models to stratify patients into higher and lower risk groups. The 8 baseline variables were age 15-29, medical history of substance abuse, mood disorder, anxiety disorder, low back pain, renal impairment, painful neuropathy and recent ER visit. 1.8% of people were in the high risk group for opioid use disorder and had a score > = 23 with the model obtaining a sensitivity of 13%, specificity of 98% and PPV of 1.14% for predicting opioid use disorder. CONCLUSIONS: CROUD could be used by clinicians to obtain personalized risk scores. CROUD could be used to further educate those at higher risk and to personalize new opioid dispensing guidelines such as urine testing. Due to the high false positive rate, it should not be used for contraindication or to restrict utilization.

2.
JAMA Intern Med ; 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32065600

RESUMO

Importance: Chlorthalidone is currently recommended as the preferred thiazide diuretic to treat hypertension, but no trials have directly compared risks and benefits. Objective: To compare the effectiveness and safety of chlorthalidone and hydrochlorothiazide as first-line therapies for hypertension in real-world practice. Design, Setting, and Participants: This is a Large-Scale Evidence Generation and Evaluation in a Network of Databases (LEGEND) observational comparative cohort study with large-scale propensity score stratification and negative-control and synthetic positive-control calibration on databases spanning January 2001 through December 2018. Outpatient and inpatient care episodes of first-time users of antihypertensive monotherapy in the United States based on 2 administrative claims databases and 1 collection of electronic health records were analyzed. Analysis began June 2018. Exposures: Chlorthalidone and hydrochlorothiazide. Main Outcomes and Measures: The primary outcomes were acute myocardial infarction, hospitalization for heart failure, ischemic or hemorrhagic stroke, and a composite cardiovascular disease outcome including the first 3 outcomes and sudden cardiac death. Fifty-one safety outcomes were measured. Results: Of 730 225 individuals (mean [SD] age, 51.5 [13.3] years; 450 100 women [61.6%]), 36 918 were dispensed or prescribed chlorthalidone and had 149 composite outcome events, and 693 337 were dispensed or prescribed hydrochlorothiazide and had 3089 composite outcome events. No significant difference was found in the associated risk of myocardial infarction, hospitalized heart failure, or stroke, with a calibrated hazard ratio for the composite cardiovascular outcome of 1.00 for chlorthalidone compared with hydrochlorothiazide (95% CI, 0.85-1.17). Chlorthalidone was associated with a significantly higher risk of hypokalemia (hazard ratio [HR], 2.72; 95% CI, 2.38-3.12), hyponatremia (HR, 1.31; 95% CI, 1.16-1.47), acute renal failure (HR, 1.37; 95% CI, 1.15-1.63), chronic kidney disease (HR, 1.24; 95% CI, 1.09-1.42), and type 2 diabetes mellitus (HR, 1.21; 95% CI, 1.12-1.30). Chlorthalidone was associated with a significantly lower risk of diagnosed abnormal weight gain (HR, 0.73; 95% CI, 0.61-0.86). Conclusions and Relevance: This study found that chlorthalidone use was not associated with significant cardiovascular benefits when compared with hydrochlorothiazide, while its use was associated with greater risk of renal and electrolyte abnormalities. These findings do not support current recommendations to prefer chlorthalidone vs hydrochlorothiazide for hypertension treatment in first-time users was found. We used advanced methods, sensitivity analyses, and diagnostics, but given the possibility of residual confounding and the limited length of observation periods, further study is warranted.

3.
Obstet Gynecol ; 135(2): 319-327, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31923062

RESUMO

OBJECTIVE: To evaluate the relative risk of cervical neoplasms among copper intrauterine device (Cu IUD) and levonorgestrel-releasing intrauterine system (LNG-IUS) users. METHODS: We performed a retrospective cohort analysis of 10,674 patients who received IUDs at Columbia University Medical Center. Our data were transformed to a common data model and are part of the Observational Health Data Sciences and Informatics network. The cohort patients and outcomes were identified by a combination of procedure codes, condition codes, and medication exposures in billing and claims data. We adjusted for confounding with propensity score stratification and propensity score 1:1 matching. RESULTS: Before propensity score adjustment, the Cu IUD cohort included 8,274 patients and the LNG-IUS cohort included 2,400 patients. The median age for both cohorts was 29 years at IUD placement. More than 95% of the LNG-IUS cohort used a device with 52 mg LNG. Before propensity score adjustment, we identified 114 cervical neoplasm outcomes. Seventy-seven (0.9%) cervical neoplasms were in the Cu IUD cohort and 37 (1.5%) were in the LNG-IUS cohort. The propensity score matching analysis identified 7,114 Cu IUD and 2,174 LNG-IUS users, with covariate balance achieved over 16,827 covariates. The diagnosis of high-grade cervical neoplasia was 0.7% in the Cu IUD cohort and 1.8% in the LNG-IUS cohort (2.4 [95% CI 1.5-4.0] cases/1,000 person-years and 5.2 [95% CI 3.7-7.1] cases/1,000 person-years, respectively). The relative risk of high-grade cervical neoplasms among Cu IUD users was 0.38 (95% CI 0.16-0.78, P<.02) compared with LNG-IUS users. By inspection, the Kaplan-Meier curves for each cohort diverged over time. CONCLUSION: Copper IUD users have a lower risk of high-grade cervical neoplasms compared with LNG-IUS users. The relative risk of cervical neoplasms of LNG-IUS users compared with the general population is unknown.

4.
Drug Saf ; 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31939079

RESUMO

INTRODUCTION: In observational studies with mortality endpoints, one needs to consider how to account for subjects whose interventions appear to be part of 'end-of-life' care. OBJECTIVE: The objective of this study was to develop a diagnostic predictive model to identify those in end-of-life care at the time of a drug exposure. METHODS: We used data from four administrative claims datasets from 2000 to 2017. The index date was the date of the first prescription for the last new drug subjects received during their observation period. The outcome of end-of-life care was determined by the presence of one or more codes indicating terminal or hospice care. Models were developed using regularized logistic regression. Internal validation was through examination of the area under the receiver operating characteristic curve (AUC) and through model calibration in a 25% subset of the data held back from model training. External validation was through examination of the AUC after applying the model learned on one dataset to the three other datasets. RESULTS: The models showed excellent performance characteristics. Internal validation resulted in AUCs ranging from 0.918 (95% confidence interval [CI] 0.905-0.930) to 0.983 (95% CI 0.978-0.987) for the four different datasets. Calibration results were also very good, with slopes near unity. External validation also produced very good to excellent performance metrics, with AUCs ranging from 0.840 (95% CI 0.834-0.846) to 0.956 (95% CI 0.952-0.960). CONCLUSION: These results show that developing diagnostic predictive models for determining subjects in end-of-life care at the time of a drug treatment is possible and may improve the validity of the risk profile for those treatments.

5.
PLoS One ; 15(1): e0226718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910437

RESUMO

BACKGROUND AND PURPOSE: Hemorrhagic transformation (HT) after cerebral infarction is a complex and multifactorial phenomenon in the acute stage of ischemic stroke, and often results in a poor prognosis. Thus, identifying risk factors and making an early prediction of HT in acute cerebral infarction contributes not only to the selections of therapeutic regimen but also, more importantly, to the improvement of prognosis of acute cerebral infarction. The purpose of this study was to develop and validate a model to predict a patient's risk of HT within 30 days of initial ischemic stroke. METHODS: We utilized a retrospective multicenter observational cohort study design to develop a Lasso Logistic Regression prediction model with a large, US Electronic Health Record dataset which structured to the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). To examine clinical transportability, the model was externally validated across 10 additional real-world healthcare datasets include EHR records for patients from America, Europe and Asia. RESULTS: In the database the model was developed, the target population cohort contained 621,178 patients with ischemic stroke, of which 5,624 patients had HT within 30 days following initial ischemic stroke. 612 risk predictors, including the distance a patient travels in an ambulance to get to care for a HT, were identified. An area under the receiver operating characteristic curve (AUC) of 0.75 was achieved in the internal validation of the risk model. External validation was performed across 10 databases totaling 5,515,508 patients with ischemic stroke, of which 86,401 patients had HT within 30 days following initial ischemic stroke. The mean external AUC was 0.71 and ranged between 0.60-0.78. CONCLUSIONS: A HT prognostic predict model was developed with Lasso Logistic Regression based on routinely collected EMR data. This model can identify patients who have a higher risk of HT than the population average with an AUC of 0.78. It shows the OMOP CDM is an appropriate data standard for EMR secondary use in clinical multicenter research for prognostic prediction model development and validation. In the future, combining this model with clinical information systems will assist clinicians to make the right therapy decision for patients with acute ischemic stroke.

6.
Korean Circ J ; 50(1): 52-68, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31642211

RESUMO

BACKGROUND AND OBJECTIVES: 2018 ESC/ESH Hypertension guideline recommends 2-drug combination as initial anti-hypertensive therapy. However, real-world evidence for effectiveness of recommended regimens remains limited. We aimed to compare the effectiveness of first-line anti-hypertensive treatment combining 2 out of the following classes: angiotensin-converting enzyme (ACE) inhibitors/angiotensin-receptor blocker (A), calcium channel blocker (C), and thiazide-type diuretics (D). METHODS: Treatment-naïve hypertensive adults without cardiovascular disease (CVD) who initiated dual anti-hypertensive medications were identified in 5 databases from US and Korea. The patients were matched for each comparison set by large-scale propensity score matching. Primary endpoint was all-cause mortality. Myocardial infarction, heart failure, stroke, and major adverse cardiac and cerebrovascular events as a composite outcome comprised the secondary measure. RESULTS: A total of 987,983 patients met the eligibility criteria. After matching, 222,686, 32,344, and 38,513 patients were allocated to A+C vs. A+D, C+D vs. A+C, and C+D vs. A+D comparison, respectively. There was no significant difference in the mortality during total of 1,806,077 person-years: A+C vs. A+D (hazard ratio [HR], 1.08; 95% confidence interval [CI], 0.97-1.20; p=0.127), C+D vs. A+C (HR, 0.93; 95% CI, 0.87-1.01; p=0.067), and C+D vs. A+D (HR, 1.18; 95% CI, 0.95-1.47; p=0.104). A+C was associated with a slightly higher risk of heart failure (HR, 1.09; 95% CI, 1.01-1.18; p=0.040) and stroke (HR, 1.08; 95% CI, 1.01-1.17; p=0.040) than A+D. CONCLUSIONS: There was no significant difference in mortality among A+C, A+D, and C+D combination treatment in patients without previous CVD. This finding was consistent across multi-national heterogeneous cohorts in real-world practice.

7.
PLoS One ; 14(12): e0226255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851711

RESUMO

BACKGROUND: Confounding by disease severity is an issue in pharmacoepidemiology studies of rheumatoid arthritis (RA), due to channeling of sicker patients to certain therapies. To address the issue of limited clinical data for confounder adjustment, a patient-level prediction model to differentiate between patients prescribed and not prescribed advanced therapies was developed as a surrogate for disease severity, using all available data from a US claims database. METHODS: Data from adult RA patients were used to build regularized logistic regression models to predict current and future disease severity using a biologic or tofacitinib prescription claim as a surrogate for moderate-to-severe disease. Model discrimination was assessed using the area under the receiver (AUC) operating characteristic curve, tested and trained in Optum Clinformatics® Extended DataMart (Optum) and additionally validated in three external IBM MarketScan® databases. The model was further validated in the Optum database across a range of patient cohorts. RESULTS: In the Optum database (n = 68,608), the AUC for discriminating RA patients with a prescription claim for a biologic or tofacitinib versus those without in the 90 days following index diagnosis was 0.80. Model AUCs were 0.77 in IBM CCAE (n = 75,579) and IBM MDCD (n = 7,537) and 0.75 in IBM MDCR (n = 36,090). There was little change in the prediction model assessing discrimination 730 days following index diagnosis (prediction model AUC in Optum was 0.79). CONCLUSIONS: A prediction model demonstrated good discrimination across multiple claims databases to identify RA patients with a prescription claim for advanced therapies during different time-at-risk periods as proxy for current and future moderate-to-severe disease. This work provides a robust model-derived risk score that can be used as a potential covariate and proxy measure to adjust for confounding by severity in multivariable models in the RA population. An R package to develop the prediction model and risk score are available in an open source platform for researchers.

8.
Lancet ; 394(10211): 1816-1826, 2019 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-31668726

RESUMO

BACKGROUND: Uncertainty remains about the optimal monotherapy for hypertension, with current guidelines recommending any primary agent among the first-line drug classes thiazide or thiazide-like diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine calcium channel blockers, and non-dihydropyridine calcium channel blockers, in the absence of comorbid indications. Randomised trials have not further refined this choice. METHODS: We developed a comprehensive framework for real-world evidence that enables comparative effectiveness and safety evaluation across many drugs and outcomes from observational data encompassing millions of patients, while minimising inherent bias. Using this framework, we did a systematic, large-scale study under a new-user cohort design to estimate the relative risks of three primary (acute myocardial infarction, hospitalisation for heart failure, and stroke) and six secondary effectiveness and 46 safety outcomes comparing all first-line classes across a global network of six administrative claims and three electronic health record databases. The framework addressed residual confounding, publication bias, and p-hacking using large-scale propensity adjustment, a large set of control outcomes, and full disclosure of hypotheses tested. FINDINGS: Using 4·9 million patients, we generated 22 000 calibrated, propensity-score-adjusted hazard ratios (HRs) comparing all classes and outcomes across databases. Most estimates revealed no effectiveness differences between classes; however, thiazide or thiazide-like diuretics showed better primary effectiveness than angiotensin-converting enzyme inhibitors: acute myocardial infarction (HR 0·84, 95% CI 0·75-0·95), hospitalisation for heart failure (0·83, 0·74-0·95), and stroke (0·83, 0·74-0·95) risk while on initial treatment. Safety profiles also favoured thiazide or thiazide-like diuretics over angiotensin-converting enzyme inhibitors. The non-dihydropyridine calcium channel blockers were significantly inferior to the other four classes. INTERPRETATION: This comprehensive framework introduces a new way of doing observational health-care science at scale. The approach supports equivalence between drug classes for initiating monotherapy for hypertension-in keeping with current guidelines, with the exception of thiazide or thiazide-like diuretics superiority to angiotensin-converting enzyme inhibitors and the inferiority of non-dihydropyridine calcium channel blockers. FUNDING: US National Science Foundation, US National Institutes of Health, Janssen Research & Development, IQVIA, South Korean Ministry of Health & Welfare, Australian National Health and Medical Research Council.


Assuntos
Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Adolescente , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/efeitos adversos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/efeitos adversos , Bloqueadores dos Canais de Cálcio/efeitos adversos , Bloqueadores dos Canais de Cálcio/uso terapêutico , Criança , Estudos de Coortes , Pesquisa Comparativa da Efetividade/métodos , Bases de Dados Factuais , Diuréticos/efeitos adversos , Diuréticos/uso terapêutico , Medicina Baseada em Evidências/métodos , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Hipertensão/complicações , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/prevenção & controle , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Adulto Jovem
9.
Cancer Res ; 79(17): 4326-4330, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31481419

RESUMO

Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer deaths globally. The landscape of systemic therapy has recently changed, with six additional systemic agents either approved or awaiting approval for advanced stage HCC. While these agents have the potential to improve outcomes, a survival increase of 2-5 months remains poor and falls short of what has been achieved in many other solid tumor types. The roles of genomics, underlying cirrhosis, and optimal use of treatment strategies that include radiation, liver transplantation, and surgery remain unanswered. Here, we discuss new treatment opportunities, controversies, and future directions in managing HCC.

10.
J Biomed Inform ; 97: 103258, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31369862

RESUMO

BACKGROUND: The primary approach for defining disease in observational healthcare databases is to construct phenotype algorithms (PAs), rule-based heuristics predicated on the presence, absence, and temporal logic of clinical observations. However, a complete evaluation of PAs, i.e., determining sensitivity, specificity, and positive predictive value (PPV), is rarely performed. In this study, we propose a tool (PheValuator) to efficiently estimate a complete PA evaluation. METHODS: We used 4 administrative claims datasets: OptumInsight's de-identified Clinformatics™ Datamart (Eden Prairie,MN); IBM MarketScan Multi-State Medicaid); IBM MarketScan Medicare Supplemental Beneficiaries; and IBM MarketScan Commercial Claims and Encounters from 2000 to 2017. Using PheValuator involves (1) creating a diagnostic predictive model for the phenotype, (2) applying the model to a large set of randomly selected subjects, and (3) comparing each subject's predicted probability for the phenotype to inclusion/exclusion in PAs. We used the predictions as a 'probabilistic gold standard' measure to classify positive/negative cases. We examined 4 phenotypes: myocardial infarction, cerebral infarction, chronic kidney disease, and atrial fibrillation. We examined several PAs for each phenotype including 1-time (1X) occurrence of the diagnosis code in the subject's record and 1-time occurrence of the diagnosis in an inpatient setting with the diagnosis code as the primary reason for admission (1X-IP-1stPos). RESULTS: Across phenotypes, the 1X PA showed the highest sensitivity/lowest PPV among all PAs. 1X-IP-1stPos yielded the highest PPV/lowest sensitivity. Specificity was very high across algorithms. We found similar results between algorithms across datasets. CONCLUSION: PheValuator appears to show promise as a tool to estimate PA performance characteristics.

11.
Pharmacoepidemiol Drug Saf ; 28(12): 1620-1628, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31456304

RESUMO

PURPOSE: To compare the incidence of diabetic ketoacidosis (DKA) among patients with type 2 diabetes mellitus (T2DM) who were new users of sodium glucose co-transporter 2 inhibitors (SGLT2i) versus other classes of antihyperglycemic agents (AHAs). METHODS: Patients were identified from four large US claims databases using broad (all T2DM patients) and narrow (intended to exclude patients with type 1 diabetes or secondary diabetes misclassified as T2DM) definitions of T2DM. New users of SGLT2i and seven groups of comparator AHAs were matched (1:1) on exposure propensity scores to adjust for imbalances in baseline covariates. Cox proportional hazards regression models, conditioned on propensity score-matched pairs, were used to estimate hazard ratios (HRs) of DKA for new users of SGLT2i versus other AHAs. When I2 <40%, a combined HR across the four databases was estimated. RESULTS: Using the broad definition of T2DM, new users of SGLT2i had an increased risk of DKA versus sulfonylureas (HR [95% CI]: 1.53 [1.31-1.79]), DPP-4i (1.28 [1.11-1.47]), GLP-1 receptor agonists (1.34 [1.12-1.60]), metformin (1.31 [1.11-1.54]), and insulinotropic AHAs (1.38 [1.15-1.66]). Using the narrow definition of T2DM, new users of SGLT2i had an increased risk of DKA versus sulfonylureas (1.43 [1.01-2.01]). New users of SGLT2i had a lower risk of DKA versus insulin and a similar risk as thiazolidinediones, regardless of T2DM definition. CONCLUSIONS: Increased risk of DKA was observed for new users of SGLT2i versus several non-SGLT2i AHAs when T2DM was defined broadly. When T2DM was defined narrowly to exclude possible misclassified patients, an increased risk of DKA with SGLT2i was observed compared with sulfonylureas.

12.
Stat Med ; 38(22): 4199-4208, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31436848

RESUMO

The case-control design is widely used in retrospective database studies, often leading to spectacular findings. However, results of these studies often cannot be replicated, and the advantage of this design over others is questionable. To demonstrate the shortcomings of applications of this design, we replicate two published case-control studies. The first investigates isotretinoin and ulcerative colitis using a simple case-control design. The second focuses on dipeptidyl peptidase-4 inhibitors and acute pancreatitis, using a nested case-control design. We include large sets of negative control exposures (where the true odds ratio is believed to be 1) in both studies. Both replication studies produce effect size estimates consistent with the original studies, but also generate estimates for the negative control exposures showing substantial residual bias. In contrast, applying a self-controlled design to answer the same questions using the same data reveals far less bias. Although the case-control design in general is not at fault, its application in retrospective database studies, where all exposure and covariate data for the entire cohort are available, is unnecessary, as other alternatives such as cohort and self-controlled designs are available. Moreover, by focusing on cases and controls it opens the door to inappropriate comparisons between exposure groups, leading to confounding for which the design has few options to adjust for. We argue that this design should no longer be used in these types of data. At the very least, negative control exposures should be used to prove that the concerns raised here do not apply.

13.
J Biomed Inform ; 97: 103264, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31386904

RESUMO

OBJECTIVES: Smoking status is poorly record in US claims data. IBM MarketScan Commercial is a claims database that can be linked to an additional health risk assessment with self-reported smoking status for a subset of 1,966,174 patients. We investigate whether this subset could be used to learn a smoking status phenotype model generalizable to all US claims data that calculates the probability of being a current smoker. METHODS: 251,643 (12.8%) had self-reported their smoking status as 'current smoker'. A regularized logistic regression model, the Current Risk of Smoking Status (CROSS), was trained using the subset of patients with self-reported smoking status. CROSS considered 53,027 candidate covariates including demographics and conditions/drugs/measurements/procedures/observations recorded in the prior 365 days, The CROSS phenotype model was validated across multiple other claims data. RESULTS: The internal validation showed the CROSS model achieved an area under the receiver operating characteristic curve (AUC) of 0.76 and the calibration plots indicated it was well calibrated. The external validation across three US claims databases obtained AUCs ranging between 0.82 and 0.87 showing the model appears to be transportable across Claims data. CONCLUSION: CROSS predicts current smoking status based on the claims records in the prior year. CROSS can be readily implemented to any US insurance claims mapped to the OMOP common data model and will be a useful way to impute smoking status when conducting epidemiology studies where smoking is a known confounder but smoking status is not recorded. CROSS is available from https://github.com/OHDSI/StudyProtocolSandbox/tree/master/SmokingModel.

14.
Drug Saf ; 42(11): 1377-1386, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31054141

RESUMO

INTRODUCTION: US claims data contain medical data on large heterogeneous populations and are excellent sources for medical research. Some claims data do not contain complete death records, limiting their use for mortality or mortality-related studies. A model to predict whether a patient died at the end of the follow-up time (referred to as the end of observation) is needed to enable mortality-related studies. OBJECTIVE: The objective of this study was to develop a patient-level model to predict whether the end of observation was due to death in US claims data. METHODS: We used a claims dataset with full death records, Optum© De-Identified Clinformatics® Data-Mart-Database-Date of Death mapped to the Observational Medical Outcome Partnership common data model, to develop a model that classifies the end of observations into death or non-death. A regularized logistic regression was trained using 88,514 predictors (recorded within the prior 365 or 30 days) and externally validated by applying the model to three US claims datasets. RESULTS: Approximately 25 in 1000 end of observations in Optum are due to death. The Discriminating End of observation into Alive and Dead (DEAD) model obtained an area under the receiver operating characteristic curve of 0.986. When defining death as a predicted risk of > 0.5, only 2% of the end of observations were predicted to be due to death and the model obtained a sensitivity of 62% and a positive predictive value of 74.8%. The external validation showed the model was transportable, with area under the receiver operating characteristic curves ranging between 0.951 and 0.995 across the US claims databases. CONCLUSIONS: US claims data often lack complete death records. The DEAD model can be used to impute death at various sensitivity, specificity, or positive predictive values depending on the use of the model. The DEAD model can be readily applied to any observational healthcare database mapped to the Observational Medical Outcome Partnership common data model and is available from https://github.com/OHDSI/StudyProtocolSandbox/tree/master/DeadModel .

16.
J Am Med Inform Assoc ; 26(4): 294-305, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753493

RESUMO

OBJECTIVE: Cohort definition is a bottleneck for conducting clinical research and depends on subjective decisions by domain experts. Data-driven cohort definition is appealing but requires substantial knowledge of terminologies and clinical data models. Criteria2Query is a natural language interface that facilitates human-computer collaboration for cohort definition and execution using clinical databases. MATERIALS AND METHODS: Criteria2Query uses a hybrid information extraction pipeline combining machine learning and rule-based methods to systematically parse eligibility criteria text, transforms it first into a structured criteria representation and next into sharable and executable clinical data queries represented as SQL queries conforming to the OMOP Common Data Model. Users can interactively review, refine, and execute queries in the ATLAS web application. To test effectiveness, we evaluated 125 criteria across different disease domains from ClinicalTrials.gov and 52 user-entered criteria. We evaluated F1 score and accuracy against 2 domain experts and calculated the average computation time for fully automated query formulation. We conducted an anonymous survey evaluating usability. RESULTS: Criteria2Query achieved 0.795 and 0.805 F1 score for entity recognition and relation extraction, respectively. Accuracies for negation detection, logic detection, entity normalization, and attribute normalization were 0.984, 0.864, 0.514 and 0.793, respectively. Fully automatic query formulation took 1.22 seconds/criterion. More than 80% (11+ of 13) of users would use Criteria2Query in their future cohort definition tasks. CONCLUSIONS: We contribute a novel natural language interface to clinical databases. It is open source and supports fully automated and interactive modes for autonomous data-driven cohort definition by researchers with minimal human effort. We demonstrate its promising user friendliness and usability.

18.
J Am Med Inform Assoc ; 25(12): 1618-1625, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30395248

RESUMO

Objective: To study the effect on patient cohorts of mapping condition (diagnosis) codes from source billing vocabularies to a clinical vocabulary. Materials and Methods: Nine International Classification of Diseases, Ninth Revision, Clinical Modification (ICD9-CM) concept sets were extracted from eMERGE network phenotypes, translated to Systematized Nomenclature of Medicine - Clinical Terms concept sets, and applied to patient data that were mapped from source ICD9-CM and ICD10-CM codes to Systematized Nomenclature of Medicine - Clinical Terms codes using Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP) vocabulary mappings. The original ICD9-CM concept set and a concept set extended to ICD10-CM were used to create patient cohorts that served as gold standards. Results: Four phenotype concept sets were able to be translated to Systematized Nomenclature of Medicine - Clinical Terms without ambiguities and were able to perform perfectly with respect to the gold standards. The other 5 lost performance when 2 or more ICD9-CM or ICD10-CM codes mapped to the same Systematized Nomenclature of Medicine - Clinical Terms code. The patient cohorts had a total error (false positive and false negative) of up to 0.15% compared to querying ICD9-CM source data and up to 0.26% compared to querying ICD9-CM and ICD10-CM data. Knowledge engineering was required to produce that performance; simple automated methods to generate concept sets had errors up to 10% (one outlier at 250%). Discussion: The translation of data from source vocabularies to Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) resulted in very small error rates that were an order of magnitude smaller than other error sources. Conclusion: It appears possible to map diagnoses from disparate vocabularies to a single clinical vocabulary and carry out research using a single set of definitions, thus improving efficiency and transportability of research.


Assuntos
Classificação Internacional de Doenças , Systematized Nomenclature of Medicine , Humanos , Estudos Observacionais como Assunto , Vocabulário Controlado
19.
Philos Trans A Math Phys Eng Sci ; 376(2128)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30082302

RESUMO

Concerns over reproducibility in science extend to research using existing healthcare data; many observational studies investigating the same topic produce conflicting results, even when using the same data. To address this problem, we propose a paradigm shift. The current paradigm centres on generating one estimate at a time using a unique study design with unknown reliability and publishing (or not) one estimate at a time. The new paradigm advocates for high-throughput observational studies using consistent and standardized methods, allowing evaluation, calibration and unbiased dissemination to generate a more reliable and complete evidence base. We demonstrate this new paradigm by comparing all depression treatments for a set of outcomes, producing 17 718 hazard ratios, each using methodology on par with current best practice. We furthermore include control hypotheses to evaluate and calibrate our evidence generation process. Results show good transitivity and consistency between databases, and agree with four out of the five findings from clinical trials. The distribution of effect size estimates reported in the literature reveals an absence of small or null effects, with a sharp cut-off at p = 0.05. No such phenomena were observed in our results, suggesting more complete and more reliable evidence.This article is part of a discussion meeting issue 'The growing ubiquity of algorithms in society: implications, impacts and innovations'.

20.
Diabetes Obes Metab ; 20(11): 2585-2597, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29938883

RESUMO

AIMS: Sodium glucose co-transporter 2 inhibitors (SGLT2i) are indicated for treatment of type 2 diabetes mellitus (T2DM); some SGLT2i have reported cardiovascular benefit, and some have reported risk of below-knee lower extremity (BKLE) amputation. This study examined the real-world comparative effectiveness within the SGLT2i class and compared with non-SGLT2i antihyperglycaemic agents. MATERIALS AND METHODS: Data from 4 large US administrative claims databases were used to characterize risk and provide population-level estimates of canagliflozin's effects on hospitalization for heart failure (HHF) and BKLE amputation vs other SGLT2i and non-SGLT2i in T2DM patients. Comparative analyses using a propensity score-adjusted new-user cohort design examined relative hazards of outcomes across all new users and a subpopulation with established cardiovascular disease. RESULTS: Across the 4 databases (142 800 new users of canagliflozin, 110 897 new users of other SGLT2i, 460 885 new users of non-SGLT2i), the meta-analytic hazard ratio estimate for HHF with canagliflozin vs non-SGLT2i was 0.39 (95% CI, 0.26-0.60) in the on-treatment analysis. The estimate for BKLE amputation with canagliflozin vs non-SGLT2i was 0.75 (95% CI, 0.40-1.41) in the on-treatment analysis and 1.01 (95% CI, 0.93-1.10) in the intent-to-treat analysis. Effects in the subpopulation with established cardiovascular disease were similar for both outcomes. No consistent differences were observed between canagliflozin and other SGLT2i. CONCLUSIONS: In this large comprehensive analysis, canagliflozin and other SGLT2i demonstrated HHF benefits consistent with clinical trial data, but showed no increased risk of BKLE amputation vs non-SGLT2i. HHF and BKLE amputation results were similar in the subpopulation with established cardiovascular disease. This study helps further characterize the potential benefits and harms of SGLT2i in routine clinical practice to complement evidence from clinical trials and prior observational studies.


Assuntos
Amputação/estatística & dados numéricos , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Hospitalização/estatística & dados numéricos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bases de Dados como Assunto/estatística & dados numéricos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Angiopatias Diabéticas/epidemiologia , Angiopatias Diabéticas/prevenção & controle , Angiopatias Diabéticas/terapia , Pé Diabético/epidemiologia , Pé Diabético/etiologia , Pé Diabético/prevenção & controle , Pé Diabético/cirurgia , Feminino , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto/estatística & dados numéricos , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA