Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Regul Toxicol Pharmacol ; : 104866, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33454352

RESUMO

Many observational studies explore the association between acetaminophen and cancer, but known limitations such as vulnerability to channeling, protopathic bias, and uncontrolled confounding hamper the interpretability of results. To help understand the potential magnitude of bias, we identify key design choices in these observational studies and specify ten study design variants that represent different combinations of these design choices. We evaluate these variants by applying them to 37 negative controls - outcome presumed not to be caused by acetaminophen - as well as four cancer outcomes in the Clinical Practice Research Datalink (CPRD) database. The estimated odds and hazards ratios for the negative controls show substantial bias in the evaluated design variants, with far fewer of the 95% confidence intervals containing 1 than the nominal 95% expected for negative controls. The effect-size estimates for the cancer outcomes are comparable to those observed for the negative controls. A comparison of exposed and unexposed reveals many differences at baseline for which most studies do not correct. We observe that the design choices made in many of the published observational studies can lead to substantial bias. Thus, caution in the interpretation of published studies of acetaminophen and cancer is recommended.

3.
J Am Med Inform Assoc ; 28(1): 14-22, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33260201

RESUMO

OBJECTIVE: This research aims to evaluate the impact of eligibility criteria on recruitment and observable clinical outcomes of COVID-19 clinical trials using electronic health record (EHR) data. MATERIALS AND METHODS: On June 18, 2020, we identified frequently used eligibility criteria from all the interventional COVID-19 trials in ClinicalTrials.gov (n = 288), including age, pregnancy, oxygen saturation, alanine/aspartate aminotransferase, platelets, and estimated glomerular filtration rate. We applied the frequently used criteria to the EHR data of COVID-19 patients in Columbia University Irving Medical Center (CUIMC) (March 2020-June 2020) and evaluated their impact on patient accrual and the occurrence of a composite endpoint of mechanical ventilation, tracheostomy, and in-hospital death. RESULTS: There were 3251 patients diagnosed with COVID-19 from the CUIMC EHR included in the analysis. The median follow-up period was 10 days (interquartile range 4-28 days). The composite events occurred in 18.1% (n = 587) of the COVID-19 cohort during the follow-up. In a hypothetical trial with common eligibility criteria, 33.6% (690/2051) were eligible among patients with evaluable data and 22.2% (153/690) had the composite event. DISCUSSION: By adjusting the thresholds of common eligibility criteria based on the characteristics of COVID-19 patients, we could observe more composite events from fewer patients. CONCLUSIONS: This research demonstrated the potential of using the EHR data of COVID-19 patients to inform the selection of eligibility criteria and their thresholds, supporting data-driven optimization of participant selection towards improved statistical power of COVID-19 trials.

4.
Lancet Digit Health ; 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33342753

RESUMO

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. METHODS: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296. FINDINGS: Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons. INTERPRETATION: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19. FUNDING: Wellcome Trust, UK National Institute for Health Research, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, IQVIA, South Korean Ministry of Health and Welfare Republic, Australian National Health and Medical Research Council, and European Health Data and Evidence Network.

5.
JAMA ; 324(16): 1640-1650, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107944

RESUMO

Importance: Current guidelines recommend ticagrelor as the preferred P2Y12 platelet inhibitor for patients with acute coronary syndrome (ACS), primarily based on a single large randomized clinical trial. The benefits and risks associated with ticagrelor vs clopidogrel in routine practice merits attention. Objective: To determine the association of ticagrelor vs clopidogrel with ischemic and hemorrhagic events in patients undergoing percutaneous coronary intervention (PCI) for ACS in clinical practice. Design, Setting, and Participants: A retrospective cohort study of patients with ACS who underwent PCI and received ticagrelor or clopidogrel was conducted using 2 United States electronic health record-based databases and 1 nationwide South Korean database from November 2011 to March 2019. Patients were matched using a large-scale propensity score algorithm, and the date of final follow-up was March 2019. Exposures: Ticagrelor vs clopidogrel. Main Outcomes and Measures: The primary end point was net adverse clinical events (NACE) at 12 months, composed of ischemic events (recurrent myocardial infarction, revascularization, or ischemic stroke) and hemorrhagic events (hemorrhagic stroke or gastrointestinal bleeding). Secondary outcomes included NACE or mortality, all-cause mortality, ischemic events, hemorrhagic events, individual components of the primary outcome, and dyspnea at 12 months. The database-level hazard ratios (HRs) were pooled to calculate summary HRs by random-effects meta-analysis. Results: After propensity score matching among 31 290 propensity-matched pairs (median age group, 60-64 years; 29.3% women), 95.5% of patients took aspirin together with ticagrelor or clopidogrel. The 1-year risk of NACE was not significantly different between ticagrelor and clopidogrel (15.1% [3484/23 116 person-years] vs 14.6% [3290/22 587 person-years]; summary HR, 1.05 [95% CI, 1.00-1.10]; P = .06). There was also no significant difference in the risk of all-cause mortality (2.0% for ticagrelor vs 2.1% for clopidogrel; summary HR, 0.97 [95% CI, 0.81-1.16]; P = .74) or ischemic events (13.5% for ticagrelor vs 13.4% for clopidogrel; summary HR, 1.03 [95% CI, 0.98-1.08]; P = .32). The risks of hemorrhagic events (2.1% for ticagrelor vs 1.6% for clopidogrel; summary HR, 1.35 [95% CI, 1.13-1.61]; P = .001) and dyspnea (27.3% for ticagrelor vs 22.6% for clopidogrel; summary HR, 1.21 [95% CI, 1.17-1.26]; P < .001) were significantly higher in the ticagrelor group. Conclusions and Relevance: Among patients with ACS who underwent PCI in routine clinical practice, ticagrelor, compared with clopidogrel, was not associated with significant difference in the risk of NACE at 12 months. Because the possibility of unmeasured confounders cannot be excluded, further research is needed to determine whether ticagrelor is more effective than clopidogrel in this setting.


Assuntos
Síndrome Coronariana Aguda/cirurgia , Clopidogrel/efeitos adversos , Intervenção Coronária Percutânea , Antagonistas do Receptor Purinérgico P2Y/efeitos adversos , Ticagrelor/efeitos adversos , Síndrome Coronariana Aguda/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Aspirina/administração & dosagem , Estudos de Casos e Controles , Causas de Morte , Clopidogrel/administração & dosagem , Bases de Dados Factuais/estatística & dados numéricos , Dispneia/induzido quimicamente , Feminino , Hemorragia/induzido quimicamente , Humanos , Isquemia/induzido quimicamente , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Metanálise em Rede , Pontuação de Propensão , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Recidiva , República da Coreia , Estudos Retrospectivos , Acidente Vascular Cerebral/epidemiologia , Ticagrelor/administração & dosagem , Estados Unidos
6.
J Am Med Inform Assoc ; 27(8): 1331-1337, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909033

RESUMO

Evidence derived from existing health-care data, such as administrative claims and electronic health records, can fill evidence gaps in medicine. However, many claim such data cannot be used to estimate causal treatment effects because of the potential for observational study bias; for example, due to residual confounding. Other concerns include P hacking and publication bias. In response, the Observational Health Data Sciences and Informatics international collaborative launched the Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND) research initiative. Its mission is to generate evidence on the effects of medical interventions using observational health-care databases while addressing the aforementioned concerns by following a recently proposed paradigm. We define 10 principles of LEGEND that enshrine this new paradigm, prescribing the generation and dissemination of evidence on many research questions at once; for example, comparing all treatments for a disease for many outcomes, thus preventing publication bias. These questions are answered using a prespecified and systematic approach, avoiding P hacking. Best-practice statistical methods address measured confounding, and control questions (research questions where the answer is known) quantify potential residual bias. Finally, the evidence is generated in a network of databases to assess consistency by sharing open-source analytics code to enhance transparency and reproducibility, but without sharing patient-level information. Here we detail the LEGEND principles and provide a generic overview of a LEGEND study. Our companion paper highlights an example study on the effects of hypertension treatments, and evaluates the internal and external validity of the evidence we generate.

7.
J Am Med Inform Assoc ; 27(8): 1268-1277, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827027

RESUMO

OBJECTIVES: To demonstrate the application of the Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND) principles described in our companion article to hypertension treatments and assess internal and external validity of the generated evidence. MATERIALS AND METHODS: LEGEND defines a process for high-quality observational research based on 10 guiding principles. We demonstrate how this process, here implemented through large-scale propensity score modeling, negative and positive control questions, empirical calibration, and full transparency, can be applied to compare antihypertensive drug therapies. We assess internal validity through covariate balance, confidence-interval coverage, between-database heterogeneity, and transitivity of results. We assess external validity through comparison to direct meta-analyses of randomized controlled trials (RCTs). RESULTS: From 21.6 million unique antihypertensive new users, we generate 6 076 775 effect size estimates for 699 872 research questions on 12 946 treatment comparisons. Through propensity score matching, we achieve balance on all baseline patient characteristics for 75% of estimates, observe 95.7% coverage in our effect-estimate 95% confidence intervals, find high between-database consistency, and achieve transitivity in 84.8% of triplet hypotheses. Compared with meta-analyses of RCTs, our results are consistent with 28 of 30 comparisons while providing narrower confidence intervals. CONCLUSION: We find that these LEGEND results show high internal validity and are congruent with meta-analyses of RCTs. For these reasons we believe that evidence generated by LEGEND is of high quality and can inform medical decision-making where evidence is currently lacking. Subsequent publications will explore the clinical interpretations of this evidence.

8.
Sci Rep ; 10(1): 11115, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632237

RESUMO

Alendronate and raloxifene are among the most popular anti-osteoporosis medications. However, there is a lack of head-to-head comparative effectiveness studies comparing the two treatments. We conducted a retrospective large-scale multicenter study encompassing over 300 million patients across nine databases encoded in the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). The primary outcome was the incidence of osteoporotic hip fracture, while secondary outcomes were vertebral fracture, atypical femoral fracture (AFF), osteonecrosis of the jaw (ONJ), and esophageal cancer. We used propensity score trimming and stratification based on an expansive propensity score model with all pre-treatment patient characteritistcs. We accounted for unmeasured confounding using negative control outcomes to estimate and adjust for residual systematic bias in each data source. We identified 283,586 alendronate patients and 40,463 raloxifene patients. There were 7.48 hip fracture, 8.18 vertebral fracture, 1.14 AFF, 0.21 esophageal cancer and 0.09 ONJ events per 1,000 person-years in the alendronate cohort and 6.62, 7.36, 0.69, 0.22 and 0.06 events per 1,000 person-years, respectively, in the raloxifene cohort. Alendronate and raloxifene have a similar hip fracture risk (hazard ratio [HR] 1.03, 95% confidence interval [CI] 0.94-1.13), but alendronate users are more likely to have vertebral fractures (HR 1.07, 95% CI 1.01-1.14). Alendronate has higher risk for AFF (HR 1.51, 95% CI 1.23-1.84) but similar risk for esophageal cancer (HR 0.95, 95% CI 0.53-1.70), and ONJ (HR 1.62, 95% CI 0.78-3.34). We demonstrated substantial control of measured confounding by propensity score adjustment, and minimal residual systematic bias through negative control experiments, lending credibility to our effect estimates. Raloxifene is as effective as alendronate and may remain an option in the prevention of osteoporotic fracture.


Assuntos
Alendronato/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Cloridrato de Raloxifeno/uso terapêutico , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Osteoporose/patologia , Estudos Retrospectivos , Resultado do Tratamento
9.
Drug Saf ; 43(9): 927-942, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32500272

RESUMO

INTRODUCTION: Observational studies estimating severe outcomes for paracetamol versus ibuprofen use have acknowledged the specific challenge of channeling bias. A previous study relying on negative controls suggested that using large-scale propensity score (LSPS) matching may mitigate bias better than models using limited lists of covariates. OBJECTIVE: The aim was to assess whether using LSPS matching would enable the evaluation of paracetamol, compared to ibuprofen, and increased risk of myocardial infarction, stroke, gastrointestinal (GI) bleeding, or acute renal failure. STUDY DESIGN AND SETTING: In a new-user cohort study, we used two propensity score model strategies for confounder controls. One replicated the approach of controlling for a hand-picked list. The second used LSPSs based on all available covariates for matching. Positive and negative controls assessed residual confounding and calibrated confidence intervals. The data source was the Clinical Practices Research Datalink (CPRD). RESULTS: A substantial proportion of negative controls were statistically significant after propensity score matching on the publication covariates, indicating considerable systematic error. LSPS adjustment was less biased, but residual error remained. The calibrated estimates resulted in very wide confidence intervals, indicating large uncertainty in effect estimates once residual error was incorporated. CONCLUSIONS: For paracetamol versus ibuprofen, when using LSPS methods in the CPRD, it is only possible to distinguish true effects if those effects are large (hazard ratio > 2). Due to their smaller hazard ratios, the outcomes under study cannot be differentiated from null effects (represented by negative controls) even if there were a true effect. Based on these data, we conclude that we are unable to determine whether paracetamol is associated with an increased risk of myocardial infarction, stroke, GI bleeding, and acute renal failure compared to ibuprofen, due to residual confounding.

10.
BMC Med Res Methodol ; 20(1): 102, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375693

RESUMO

BACKGROUND: To demonstrate how the Observational Healthcare Data Science and Informatics (OHDSI) collaborative network and standardization can be utilized to scale-up external validation of patient-level prediction models by enabling validation across a large number of heterogeneous observational healthcare datasets. METHODS: Five previously published prognostic models (ATRIA, CHADS2, CHADS2VASC, Q-Stroke and Framingham) that predict future risk of stroke in patients with atrial fibrillation were replicated using the OHDSI frameworks. A network study was run that enabled the five models to be externally validated across nine observational healthcare datasets spanning three countries and five independent sites. RESULTS: The five existing models were able to be integrated into the OHDSI framework for patient-level prediction and they obtained mean c-statistics ranging between 0.57-0.63 across the 6 databases with sufficient data to predict stroke within 1 year of initial atrial fibrillation diagnosis for females with atrial fibrillation. This was comparable with existing validation studies. The validation network study was run across nine datasets within 60 days once the models were replicated. An R package for the study was published at https://github.com/OHDSI/StudyProtocolSandbox/tree/master/ExistingStrokeRiskExternalValidation. CONCLUSION: This study demonstrates the ability to scale up external validation of patient-level prediction models using a collaboration of researchers and a data standardization that enable models to be readily shared across data sites. External validation is necessary to understand the transportability or reproducibility of a prediction model, but without collaborative approaches it can take three or more years for a model to be validated by one independent researcher. In this paper we show it is possible to both scale-up and speed-up external validation by showing how validation can be done across multiple databases in less than 2 months. We recommend that researchers developing new prediction models use the OHDSI network to externally validate their models.

12.
PLoS One ; 15(2): e0228632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053653

RESUMO

OBJECTIVE: Some patients who are given opioids for pain could develop opioid use disorder. If it was possible to identify patients who are at a higher risk of opioid use disorder, then clinicians could spend more time educating these patients about the risks. We develop and validate a model to predict a person's future risk of opioid use disorder at the point before being dispensed their first opioid. METHODS: A cohort study patient-level prediction using four US claims databases with target populations ranging between 343,552 and 384,424 patients. The outcome was recorded diagnosis of opioid abuse, dependency or unspecified drug abuse as a proxy for opioid use disorder from 1 day until 365 days after the first opioid is dispensed. We trained a regularized logistic regression using candidate predictors consisting of demographics and any conditions, drugs, procedures or visits prior to the first opioid. We then selected the top predictors and created a simple 8 variable score model. RESULTS: We estimated the percentage of new users of opioids with reported opioid use disorder within a year to range between 0.04%-0.26% across US claims data. We developed an 8 variable Calculator of Risk for Opioid Use Disorder (CROUD) score, derived from the prediction models to stratify patients into higher and lower risk groups. The 8 baseline variables were age 15-29, medical history of substance abuse, mood disorder, anxiety disorder, low back pain, renal impairment, painful neuropathy and recent ER visit. 1.8% of people were in the high risk group for opioid use disorder and had a score > = 23 with the model obtaining a sensitivity of 13%, specificity of 98% and PPV of 1.14% for predicting opioid use disorder. CONCLUSIONS: CROUD could be used by clinicians to obtain personalized risk scores. CROUD could be used to further educate those at higher risk and to personalize new opioid dispensing guidelines such as urine testing. Due to the high false positive rate, it should not be used for contraindication or to restrict utilization.


Assuntos
Coleta de Dados/métodos , Informática Médica/métodos , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Adolescente , Adulto , Idoso , Algoritmos , Analgésicos Opioides/uso terapêutico , Área Sob a Curva , Dor Crônica/tratamento farmacológico , Estudos de Coortes , Prescrições de Medicamentos , Feminino , Humanos , Masculino , Anamnese , Pessoa de Meia-Idade , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Dor , Doenças do Sistema Nervoso Periférico , Análise de Regressão , Medição de Risco , Fatores de Risco , Inquéritos e Questionários , Estados Unidos , Adulto Jovem
13.
JAMA Intern Med ; 180(4): 542-551, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32065600

RESUMO

Importance: Chlorthalidone is currently recommended as the preferred thiazide diuretic to treat hypertension, but no trials have directly compared risks and benefits. Objective: To compare the effectiveness and safety of chlorthalidone and hydrochlorothiazide as first-line therapies for hypertension in real-world practice. Design, Setting, and Participants: This is a Large-Scale Evidence Generation and Evaluation in a Network of Databases (LEGEND) observational comparative cohort study with large-scale propensity score stratification and negative-control and synthetic positive-control calibration on databases spanning January 2001 through December 2018. Outpatient and inpatient care episodes of first-time users of antihypertensive monotherapy in the United States based on 2 administrative claims databases and 1 collection of electronic health records were analyzed. Analysis began June 2018. Exposures: Chlorthalidone and hydrochlorothiazide. Main Outcomes and Measures: The primary outcomes were acute myocardial infarction, hospitalization for heart failure, ischemic or hemorrhagic stroke, and a composite cardiovascular disease outcome including the first 3 outcomes and sudden cardiac death. Fifty-one safety outcomes were measured. Results: Of 730 225 individuals (mean [SD] age, 51.5 [13.3] years; 450 100 women [61.6%]), 36 918 were dispensed or prescribed chlorthalidone and had 149 composite outcome events, and 693 337 were dispensed or prescribed hydrochlorothiazide and had 3089 composite outcome events. No significant difference was found in the associated risk of myocardial infarction, hospitalized heart failure, or stroke, with a calibrated hazard ratio for the composite cardiovascular outcome of 1.00 for chlorthalidone compared with hydrochlorothiazide (95% CI, 0.85-1.17). Chlorthalidone was associated with a significantly higher risk of hypokalemia (hazard ratio [HR], 2.72; 95% CI, 2.38-3.12), hyponatremia (HR, 1.31; 95% CI, 1.16-1.47), acute renal failure (HR, 1.37; 95% CI, 1.15-1.63), chronic kidney disease (HR, 1.24; 95% CI, 1.09-1.42), and type 2 diabetes mellitus (HR, 1.21; 95% CI, 1.12-1.30). Chlorthalidone was associated with a significantly lower risk of diagnosed abnormal weight gain (HR, 0.73; 95% CI, 0.61-0.86). Conclusions and Relevance: This study found that chlorthalidone use was not associated with significant cardiovascular benefits when compared with hydrochlorothiazide, while its use was associated with greater risk of renal and electrolyte abnormalities. These findings do not support current recommendations to prefer chlorthalidone vs hydrochlorothiazide for hypertension treatment in first-time users was found. We used advanced methods, sensitivity analyses, and diagnostics, but given the possibility of residual confounding and the limited length of observation periods, further study is warranted.


Assuntos
Anti-Hipertensivos/uso terapêutico , Clortalidona/uso terapêutico , Hidroclorotiazida/uso terapêutico , Hipertensão/tratamento farmacológico , Anti-Hipertensivos/efeitos adversos , Clortalidona/efeitos adversos , Feminino , Humanos , Hidroclorotiazida/efeitos adversos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
14.
PLoS One ; 15(1): e0226718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910437

RESUMO

BACKGROUND AND PURPOSE: Hemorrhagic transformation (HT) after cerebral infarction is a complex and multifactorial phenomenon in the acute stage of ischemic stroke, and often results in a poor prognosis. Thus, identifying risk factors and making an early prediction of HT in acute cerebral infarction contributes not only to the selections of therapeutic regimen but also, more importantly, to the improvement of prognosis of acute cerebral infarction. The purpose of this study was to develop and validate a model to predict a patient's risk of HT within 30 days of initial ischemic stroke. METHODS: We utilized a retrospective multicenter observational cohort study design to develop a Lasso Logistic Regression prediction model with a large, US Electronic Health Record dataset which structured to the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). To examine clinical transportability, the model was externally validated across 10 additional real-world healthcare datasets include EHR records for patients from America, Europe and Asia. RESULTS: In the database the model was developed, the target population cohort contained 621,178 patients with ischemic stroke, of which 5,624 patients had HT within 30 days following initial ischemic stroke. 612 risk predictors, including the distance a patient travels in an ambulance to get to care for a HT, were identified. An area under the receiver operating characteristic curve (AUC) of 0.75 was achieved in the internal validation of the risk model. External validation was performed across 10 databases totaling 5,515,508 patients with ischemic stroke, of which 86,401 patients had HT within 30 days following initial ischemic stroke. The mean external AUC was 0.71 and ranged between 0.60-0.78. CONCLUSIONS: A HT prognostic predict model was developed with Lasso Logistic Regression based on routinely collected EMR data. This model can identify patients who have a higher risk of HT than the population average with an AUC of 0.78. It shows the OMOP CDM is an appropriate data standard for EMR secondary use in clinical multicenter research for prognostic prediction model development and validation. In the future, combining this model with clinical information systems will assist clinicians to make the right therapy decision for patients with acute ischemic stroke.


Assuntos
Isquemia Encefálica/complicações , Hemorragia Cerebral/diagnóstico , Modelos Estatísticos , Medição de Risco/métodos , Acidente Vascular Cerebral/complicações , Hemorragia Cerebral/etiologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Estudos Retrospectivos , Fatores de Risco
15.
Drug Saf ; 43(5): 447-455, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31939079

RESUMO

INTRODUCTION: In observational studies with mortality endpoints, one needs to consider how to account for subjects whose interventions appear to be part of 'end-of-life' care. OBJECTIVE: The objective of this study was to develop a diagnostic predictive model to identify those in end-of-life care at the time of a drug exposure. METHODS: We used data from four administrative claims datasets from 2000 to 2017. The index date was the date of the first prescription for the last new drug subjects received during their observation period. The outcome of end-of-life care was determined by the presence of one or more codes indicating terminal or hospice care. Models were developed using regularized logistic regression. Internal validation was through examination of the area under the receiver operating characteristic curve (AUC) and through model calibration in a 25% subset of the data held back from model training. External validation was through examination of the AUC after applying the model learned on one dataset to the three other datasets. RESULTS: The models showed excellent performance characteristics. Internal validation resulted in AUCs ranging from 0.918 (95% confidence interval [CI] 0.905-0.930) to 0.983 (95% CI 0.978-0.987) for the four different datasets. Calibration results were also very good, with slopes near unity. External validation also produced very good to excellent performance metrics, with AUCs ranging from 0.840 (95% CI 0.834-0.846) to 0.956 (95% CI 0.952-0.960). CONCLUSION: These results show that developing diagnostic predictive models for determining subjects in end-of-life care at the time of a drug treatment is possible and may improve the validity of the risk profile for those treatments.

16.
Obstet Gynecol ; 135(2): 319-327, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31923062

RESUMO

OBJECTIVE: To evaluate the relative risk of cervical neoplasms among copper intrauterine device (Cu IUD) and levonorgestrel-releasing intrauterine system (LNG-IUS) users. METHODS: We performed a retrospective cohort analysis of 10,674 patients who received IUDs at Columbia University Medical Center. Our data were transformed to a common data model and are part of the Observational Health Data Sciences and Informatics network. The cohort patients and outcomes were identified by a combination of procedure codes, condition codes, and medication exposures in billing and claims data. We adjusted for confounding with propensity score stratification and propensity score 1:1 matching. RESULTS: Before propensity score adjustment, the Cu IUD cohort included 8,274 patients and the LNG-IUS cohort included 2,400 patients. The median age for both cohorts was 29 years at IUD placement. More than 95% of the LNG-IUS cohort used a device with 52 mg LNG. Before propensity score adjustment, we identified 114 cervical neoplasm outcomes. Seventy-seven (0.9%) cervical neoplasms were in the Cu IUD cohort and 37 (1.5%) were in the LNG-IUS cohort. The propensity score matching analysis identified 7,114 Cu IUD and 2,174 LNG-IUS users, with covariate balance achieved over 16,827 covariates. The diagnosis of high-grade cervical neoplasia was 0.7% in the Cu IUD cohort and 1.8% in the LNG-IUS cohort (2.4 [95% CI 1.5-4.0] cases/1,000 person-years and 5.2 [95% CI 3.7-7.1] cases/1,000 person-years, respectively). The relative risk of high-grade cervical neoplasms among Cu IUD users was 0.38 (95% CI 0.16-0.78, P<.02) compared with LNG-IUS users. By inspection, the Kaplan-Meier curves for each cohort diverged over time. CONCLUSION: Copper IUD users have a lower risk of high-grade cervical neoplasms compared with LNG-IUS users. The relative risk of cervical neoplasms of LNG-IUS users compared with the general population is unknown.


Assuntos
Dispositivos Intrauterinos de Cobre/estatística & dados numéricos , Dispositivos Intrauterinos Medicados/estatística & dados numéricos , Levanogestrel/administração & dosagem , Neoplasias do Colo do Útero/epidemiologia , Adolescente , Adulto , Criança , Anticoncepcionais Femininos/administração & dosagem , Bases de Dados Factuais , Feminino , Humanos , Dispositivos Intrauterinos de Cobre/efeitos adversos , Dispositivos Intrauterinos Medicados/efeitos adversos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , New York/epidemiologia , Pontuação de Propensão , Estudos Retrospectivos , Medição de Risco , Adulto Jovem
17.
Korean Circ J ; 50(1): 52-68, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31642211

RESUMO

BACKGROUND AND OBJECTIVES: 2018 ESC/ESH Hypertension guideline recommends 2-drug combination as initial anti-hypertensive therapy. However, real-world evidence for effectiveness of recommended regimens remains limited. We aimed to compare the effectiveness of first-line anti-hypertensive treatment combining 2 out of the following classes: angiotensin-converting enzyme (ACE) inhibitors/angiotensin-receptor blocker (A), calcium channel blocker (C), and thiazide-type diuretics (D). METHODS: Treatment-naïve hypertensive adults without cardiovascular disease (CVD) who initiated dual anti-hypertensive medications were identified in 5 databases from US and Korea. The patients were matched for each comparison set by large-scale propensity score matching. Primary endpoint was all-cause mortality. Myocardial infarction, heart failure, stroke, and major adverse cardiac and cerebrovascular events as a composite outcome comprised the secondary measure. RESULTS: A total of 987,983 patients met the eligibility criteria. After matching, 222,686, 32,344, and 38,513 patients were allocated to A+C vs. A+D, C+D vs. A+C, and C+D vs. A+D comparison, respectively. There was no significant difference in the mortality during total of 1,806,077 person-years: A+C vs. A+D (hazard ratio [HR], 1.08; 95% confidence interval [CI], 0.97-1.20; p=0.127), C+D vs. A+C (HR, 0.93; 95% CI, 0.87-1.01; p=0.067), and C+D vs. A+D (HR, 1.18; 95% CI, 0.95-1.47; p=0.104). A+C was associated with a slightly higher risk of heart failure (HR, 1.09; 95% CI, 1.01-1.18; p=0.040) and stroke (HR, 1.08; 95% CI, 1.01-1.17; p=0.040) than A+D. CONCLUSIONS: There was no significant difference in mortality among A+C, A+D, and C+D combination treatment in patients without previous CVD. This finding was consistent across multi-national heterogeneous cohorts in real-world practice.

18.
PLoS One ; 14(12): e0226255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851711

RESUMO

BACKGROUND: Confounding by disease severity is an issue in pharmacoepidemiology studies of rheumatoid arthritis (RA), due to channeling of sicker patients to certain therapies. To address the issue of limited clinical data for confounder adjustment, a patient-level prediction model to differentiate between patients prescribed and not prescribed advanced therapies was developed as a surrogate for disease severity, using all available data from a US claims database. METHODS: Data from adult RA patients were used to build regularized logistic regression models to predict current and future disease severity using a biologic or tofacitinib prescription claim as a surrogate for moderate-to-severe disease. Model discrimination was assessed using the area under the receiver (AUC) operating characteristic curve, tested and trained in Optum Clinformatics® Extended DataMart (Optum) and additionally validated in three external IBM MarketScan® databases. The model was further validated in the Optum database across a range of patient cohorts. RESULTS: In the Optum database (n = 68,608), the AUC for discriminating RA patients with a prescription claim for a biologic or tofacitinib versus those without in the 90 days following index diagnosis was 0.80. Model AUCs were 0.77 in IBM CCAE (n = 75,579) and IBM MDCD (n = 7,537) and 0.75 in IBM MDCR (n = 36,090). There was little change in the prediction model assessing discrimination 730 days following index diagnosis (prediction model AUC in Optum was 0.79). CONCLUSIONS: A prediction model demonstrated good discrimination across multiple claims databases to identify RA patients with a prescription claim for advanced therapies during different time-at-risk periods as proxy for current and future moderate-to-severe disease. This work provides a robust model-derived risk score that can be used as a potential covariate and proxy measure to adjust for confounding by severity in multivariable models in the RA population. An R package to develop the prediction model and risk score are available in an open source platform for researchers.


Assuntos
Artrite Reumatoide/fisiopatologia , Bases de Dados Factuais , Revisão da Utilização de Seguros , Antirreumáticos/administração & dosagem , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Piperidinas/administração & dosagem , Pirimidinas/administração & dosagem , Pirróis/administração & dosagem , Índice de Gravidade de Doença
19.
Lancet ; 394(10211): 1816-1826, 2019 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-31668726

RESUMO

BACKGROUND: Uncertainty remains about the optimal monotherapy for hypertension, with current guidelines recommending any primary agent among the first-line drug classes thiazide or thiazide-like diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine calcium channel blockers, and non-dihydropyridine calcium channel blockers, in the absence of comorbid indications. Randomised trials have not further refined this choice. METHODS: We developed a comprehensive framework for real-world evidence that enables comparative effectiveness and safety evaluation across many drugs and outcomes from observational data encompassing millions of patients, while minimising inherent bias. Using this framework, we did a systematic, large-scale study under a new-user cohort design to estimate the relative risks of three primary (acute myocardial infarction, hospitalisation for heart failure, and stroke) and six secondary effectiveness and 46 safety outcomes comparing all first-line classes across a global network of six administrative claims and three electronic health record databases. The framework addressed residual confounding, publication bias, and p-hacking using large-scale propensity adjustment, a large set of control outcomes, and full disclosure of hypotheses tested. FINDINGS: Using 4·9 million patients, we generated 22 000 calibrated, propensity-score-adjusted hazard ratios (HRs) comparing all classes and outcomes across databases. Most estimates revealed no effectiveness differences between classes; however, thiazide or thiazide-like diuretics showed better primary effectiveness than angiotensin-converting enzyme inhibitors: acute myocardial infarction (HR 0·84, 95% CI 0·75-0·95), hospitalisation for heart failure (0·83, 0·74-0·95), and stroke (0·83, 0·74-0·95) risk while on initial treatment. Safety profiles also favoured thiazide or thiazide-like diuretics over angiotensin-converting enzyme inhibitors. The non-dihydropyridine calcium channel blockers were significantly inferior to the other four classes. INTERPRETATION: This comprehensive framework introduces a new way of doing observational health-care science at scale. The approach supports equivalence between drug classes for initiating monotherapy for hypertension-in keeping with current guidelines, with the exception of thiazide or thiazide-like diuretics superiority to angiotensin-converting enzyme inhibitors and the inferiority of non-dihydropyridine calcium channel blockers. FUNDING: US National Science Foundation, US National Institutes of Health, Janssen Research & Development, IQVIA, South Korean Ministry of Health & Welfare, Australian National Health and Medical Research Council.


Assuntos
Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Adolescente , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/efeitos adversos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/efeitos adversos , Bloqueadores dos Canais de Cálcio/efeitos adversos , Bloqueadores dos Canais de Cálcio/uso terapêutico , Criança , Estudos de Coortes , Pesquisa Comparativa da Efetividade/métodos , Bases de Dados Factuais , Diuréticos/efeitos adversos , Diuréticos/uso terapêutico , Medicina Baseada em Evidências/métodos , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Hipertensão/complicações , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/prevenção & controle , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Adulto Jovem
20.
Cancer Res ; 79(17): 4326-4330, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31481419

RESUMO

Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer deaths globally. The landscape of systemic therapy has recently changed, with six additional systemic agents either approved or awaiting approval for advanced stage HCC. While these agents have the potential to improve outcomes, a survival increase of 2-5 months remains poor and falls short of what has been achieved in many other solid tumor types. The roles of genomics, underlying cirrhosis, and optimal use of treatment strategies that include radiation, liver transplantation, and surgery remain unanswered. Here, we discuss new treatment opportunities, controversies, and future directions in managing HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA