Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Genes (Basel) ; 12(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804709

RESUMO

While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. We have sequenced and analyzed genomes of three members of this clade in order to fill this gap. Their comparative analyses revealed only minute differences from Leishmaniamajor genome in terms of metabolic capacities. We also documented that the number of genes under positive selection on the Endotrypanum/Porcisia branch is rather small, with the flagellum-related group of genes being over-represented. Most significantly, the analysis of gene family evolution revealed a substantially reduced repertoire of surface proteins, such as amastins and biopterin transporters BT1 in the Endotrypanum/Porcisia species when compared to amastigote-dwelling Leishmania. This reduction was especially pronounced for δ-amastins, a subfamily of cell surface proteins crucial in the propagation of Leishmania amastigotes inside vertebrate macrophages and, apparently, dispensable for Endotrypanum/Porcisia, which do not infect such cells.

2.
Virulence ; 12(1): 852-867, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33724149

RESUMO

Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.

3.
Parasit Vectors ; 14(1): 15, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407867

RESUMO

BACKGROUND: Leishmaniasis, caused by parasites of the genus Leishmania, is a disease that affects up to 8 million people worldwide. Parasites are transmitted to human and animal hosts through the bite of an infected sand fly. Novel strategies for disease control require a better understanding of the key step for transmission, namely the establishment of infection inside the fly. METHODS: The aim of this work was to identify sand fly systemic transcriptomic signatures associated with Leishmania infection. We used next generation sequencing to describe the transcriptome of whole Phlebotomus papatasi sand flies when fed with blood alone (control) or with blood containing one of three trypanosomatids: Leishmania major, L. donovani and Herpetomonas muscarum, the latter being a parasite not transmitted to humans. RESULTS: Of the trypanosomatids studied, only L. major was able to successfully establish an infection in the host P. papatasi. However, the transcriptional signatures observed after each parasite-contaminated blood meal were not specific to success or failure of a specific infection and they did not differ from each other. The transcriptional signatures were also indistinguishable after a non-contaminated blood meal. CONCLUSIONS: The results imply that sand flies perceive Leishmania as just one feature of their microbiome landscape and that any strategy to tackle transmission should focus on the response towards the blood meal rather than parasite establishment. Alternatively, Leishmania could suppress host responses. These results will generate new thinking around the concept of stopping transmission by controlling the parasite inside the insect.

4.
Nat Commun ; 12(1): 215, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431825

RESUMO

Leishmaniasis is widely regarded as a vaccine-preventable disease, but the costs required to reach pivotal Phase 3 studies and uncertainty about which candidate vaccines should be progressed into human studies significantly limits progress in vaccine development for this neglected tropical disease. Controlled human infection models (CHIMs) provide a pathway for accelerating vaccine development and to more fully understand disease pathogenesis and correlates of protection. Here, we describe the isolation, characterization and GMP manufacture of a new clinical strain of Leishmania major. Two fresh strains of L. major from Israel were initially compared by genome sequencing, in vivo infectivity and drug sensitivity in mice, and development and transmission competence in sand flies, allowing one to be selected for GMP production. This study addresses a major roadblock in the development of vaccines for leishmaniasis, providing a key resource for CHIM studies of sand fly transmitted cutaneous leishmaniasis.


Assuntos
Leishmania major/fisiologia , Leishmaniose Cutânea/parasitologia , Animais , Modelos Animais de Doenças , Humanos , Insetos Vetores/parasitologia , Israel , Leishmania major/genética , Leishmania major/crescimento & desenvolvimento , Leishmaniose Cutânea/transmissão , Camundongos Endogâmicos BALB C , Parasitos/genética , Filogenia , Psychodidae/parasitologia , Sequenciamento Completo do Genoma
5.
Microorganisms ; 8(9)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962237

RESUMO

The clinical manifestation of leishmaniases depends on parasite species, host genetic background, and immune response. Manifestations of human leishmaniases are highly variable, ranging from self-healing skin lesions to fatal visceral disease. The scope of standard model hosts is insufficient to mimic well the wide disease spectrum, which compels the introduction of new model animals for leishmaniasis research. In this article, we study the susceptibility of three Asian rodent species (Cricetulus griseus, Lagurus lagurus, and Phodopus sungorus) to Leishmania major and L. donovani. The external manifestation of the disease, distribution, as well as load of parasites and infectiousness to natural sand fly vectors, were compared with standard models, BALB/c mice and Mesocricetus auratus. No significant differences were found in disease outcomes in animals inoculated with sand fly- or culture-derived parasites. All Asian rodent species were highly susceptible to L. major. Phodopus sungorus showed the non-healing phenotype with the progressive growth of ulcerative lesions and massive parasite loads. Lagurus lagurus and C. griseus represented the healing phenotype, the latter with high infectiousness to vectors, mimicking best the character of natural reservoir hosts. Both, L. lagurus and C. griseus were also highly susceptible to L. donovani, having wider parasite distribution and higher parasite loads and infectiousness than standard model animals.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32388220

RESUMO

OBJECTIVES: This study evaluated the implications of clinically acquired miltefosine resistance (MIL-R) by assessing virulence in mice and sand flies to reveal the potential of MIL-R strains to circulate. METHODS: Experimental infections with the MIL-R clinical Leishmania infantum isolate MHOM/FR/2005/LEM5159, having a defect in the LiROS3 subunit of the MIL-transporter, and its syngeneic experimentally reconstituted MIL-S counterpart (LEM5159LiROS3) were performed in BALB/c mice and Lutzomyia longipalpis and Phlebotomus perniciosus sand flies. In mice, the amastigote burdens in liver and spleen were compared microscopically using Giemsa smears and by bioluminescent imaging. During the sand fly infections, the percentage of infected flies, parasite load, colonization of the stomodeal valve and metacyclogenesis were evaluated. The stability of the MIL-R phenotype after sand fly and mouse passage was determined as well. RESULTS: The fitness of the MIL-R strain differed between the mouse and sand fly infection model. In mice, a clear fitness loss was observed compared to the LiROS3-reconstituted susceptible strain. This defect could be rescued by episomal reconstitution with a wildtype LiROS3 copy. However, this fitness loss was not apparent in the sand fly vector, resulting in metacyclogenesis and efficient colonization of the stomodeal valve. Resistance was stable after passage in both sand fly and mouse. CONCLUSION: The natural MIL-R strain is significantly hampered in its ability to multiply and cause a typical visceral infection pattern in BALB/c mice. However, this LiROS3-deficient strain efficiently produced mature infections and metacyclic promastigotes in the sand fly vector highlighting the transmission potential of this particular MIL-R clinical Leishmania strain.

7.
Parasit Vectors ; 13(1): 181, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32268916

RESUMO

BACKGROUND: Leishmaniasis is a human and animal disease caused by parasites of the genus Leishmania, which is now divided into four subgenera, Leishmania, Viannia, Sauroleishmania and Mundinia. Subgenus Mundinia, established in 2016, is geographically widely dispersed, its distribution covers all continents, except Antarctica. It consists of 5 species; L. enriettii and L. macropodum are parasites of wild mammals while L. martiniquensis, L. orientalis and an unnamed Leishmania sp. from Ghana are infectious to humans. There is very little information on natural reservoir hosts and vectors for any Mundinia species. METHODS: Experimental infections of guinea pigs with all five Mundinia species were performed. Animals were injected intradermally with 107 culture-derived promastigotes into both ear pinnae. The courses of infections were monitored weekly; xenodiagnoses were performed at weeks 4 and 8 post-infection using Lutzomyia migonei. The distribution of parasites in different tissues was determined post-mortem by conventional PCR. RESULTS: No significant differences in weight were observed between infected animals and the control group. Animals infected with L. enriettii developed temporary lesions at the site of inoculation and were infectious to Lu. migonei in xenodiagnoses. Animals infected with L. martiniquensis and L. orientalis developed temporary erythema and dry lesions at the site of inoculation, respectively, but were not infectious to sand flies. Guinea pigs infected by L. macropodum and Leishmania sp. from Ghana showed no signs of infection during experiments, were not infectious to sand flies and leishmanial DNA was not detected in their tissue samples at the end of experiments at week 12 post-inoculation. CONCLUSIONS: According to our results, guinea pigs are not an appropriate model organism for studying Mundinia species other than L. enriettii. We suggest that for better understanding of L. (Mundinia) biology it is necessary to focus on other model organisms.


Assuntos
Modelos Animais de Doenças , Leishmania/crescimento & desenvolvimento , Leishmaniose/veterinária , Animais , Feminino , Cobaias , Leishmania/classificação , Leishmaniose/parasitologia
8.
Sci Rep ; 10(1): 3566, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32108151

RESUMO

Leishmaniases are neglected tropical diseases and Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis are the most important causative agents of leishmaniases in the New World. These two parasite species may co-circulate in a given endemic area but their interactions in the vector have not been studied yet. We conducted experimental infections using both single infections and co-infections to compare the development of L. (L.) infantum (OGVL/mCherry) and L. (V.) braziliensis (XB29/GFP) in Lutzomyia longipalpis and Lutzomyia migonei. Parasite labelling by different fluorescein proteins enabled studying interspecific competition and localization of different parasite species during co-infections. Both Leishmania species completed their life cycle, producing infective forms in both sand fly species studied. The same happens in the co infections, demonstrating that the two parasites conclude their development and do not compete with each other. However, infections produced by L. (L.) infantum reached higher rates and grew more vigorously, as compared to L. (V.) braziliensis. In late-stage infections, L. (L.) infantum was present in all midgut regions, showing typical suprapylarian type of development, whereas L. (V.) braziliensis was concentrated in the hindgut and the abdominal midgut (peripylarian development). We concluded that both Lu. migonei and Lu. longipalpis are equally susceptible vectors for L. (L.) infantum, in laboratory colonies. In relation to L. (V.) braziliensis, Lu. migonei appears to be more susceptible to this parasite than Lu. longipalpis.

9.
Int J Parasitol Parasites Wildl ; 11: 40-45, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31879594

RESUMO

Visceral leishmaniasis caused by Leishmania donovani is regarded as mostly anthroponotic, but a role for animal reservoir hosts in transmission has been suggested in East Africa. Field studies in this region have shown the presence of this parasite in several mammalian species, including rodents of the genera Arvicanthis and Mastomys. Further, the natural reservoirs of Leishmania (Mundinia) sp. causing human cutaneous disease in Ghana, West Africa, are unknown. This study assessed the potential role of the Sub-Saharan rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis as hosts of L. donovani and L. sp. from Ghana, based on experimental infections of animals and xenodiagnoses. The distribution and load of parasites were determined post mortem using qPCR from the blood, skin and viscera samples. The attractiveness of Arvicanthis and Mastomys to Phlebotomus orientalis was tested by pair-wise comparisons. None of the animals inoculated with L. donovani were infectious to P. orientalis females, although, in some animals, parasites were detected by PCR even 30 weeks post infection. Skin infections were characterized by low numbers of parasites while high parasite burdens were present in spleen, liver and lymph nodes only. Therefore, wild Arvicanthis and Mastomys found infected with L. donovani, should be considered parasite sinks rather than parasite reservoirs. This is indirectly supported also by results of host choice experiments with P. orientalis in which females preferred humans over both Arvicanthis and Mastomys, and their feeding rates on rodents ranged from 1.4 to 5.8% only. Therefore, the involvement of these rodents in transmission of L. donovani by P. orientalis is very unlikely. Similarly, poor survival of Leishmania parasites in the studied rodents and negative results of xenodiagnostic experiments do not support the involvement of Arvicanthis and Mastomys spp. in the transmission cycle of L. sp. from Ghana.

10.
BMC Genomics ; 20(1): 726, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601168

RESUMO

BACKGROUND: Trypanosomatids of the genus Leishmania are parasites of mammals or reptiles transmitted by bloodsucking dipterans. Many species of these flagellates cause important human diseases with clinical symptoms ranging from skin sores to life-threatening damage of visceral organs. The genus Leishmania contains four subgenera: Leishmania, Sauroleishmania, Viannia, and Mundinia. The last subgenus has been established recently and remains understudied, although Mundinia contains human-infecting species. In addition, it is interesting from the evolutionary viewpoint, representing the earliest branch within the genus and possibly with a different type of vector. Here we analyzed the genomes of L. (M.) martiniquensis, L. (M.) enriettii and L. (M.) macropodum to better understand the biology and evolution of these parasites. RESULTS: All three genomes analyzed were approximately of the same size (~ 30 Mb) and similar to that of L. (Sauroleishmania) tarentolae, but smaller than those of the members of subgenera Leishmania and Viannia, or the genus Endotrypanum (~ 32 Mb). This difference was explained by domination of gene losses over gains and contractions over expansions at the Mundinia node, although only a few of these genes could be identified. The analysis predicts significant changes in the Mundinia cell surface architecture, with the most important ones relating to losses of LPG-modifying side chain galactosyltransferases and arabinosyltransferases, as well as ß-amastins. Among other important changes were gene family contractions for the oxygen-sensing adenylate cyclases and FYVE zinc finger-containing proteins. CONCLUSIONS: We suggest that adaptation of Mundinia to different vectors and hosts has led to alternative host-parasite relationships and, thereby, made some proteins redundant. Thus, the evolution of genomes in the genus Leishmania and, in particular, in the subgenus Mundinia was mainly shaped by host (or vector) switches.


Assuntos
Perfilação da Expressão Gênica/métodos , Leishmania/classificação , Proteínas de Protozoários/genética , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Regulação da Expressão Gênica , Tamanho do Genoma , Genômica , Especificidade de Hospedeiro , Leishmania/genética , Filogenia , Ploidias , Sequenciamento Completo do Exoma
11.
Artigo em Inglês | MEDLINE | ID: mdl-31525614

RESUMO

OBJECTIVES: To gain insight into the propagation of miltefosine (MIL) resistance in visceral leishmaniasis, this laboratory study explored development of resistant parasites with a defective miltefosine transporter (MT) in sand flies. METHODS: Infectivity, colonization of stomodeal valve and metacyclogenesis of a MIL-resistant (MIL-R) Leishmania infantum LEM3323 line with a defective MT were assessed in the natural sand fly vectors Phlebotomus perniciosus and Lutzomyia longipalpis. Given our recent description of partial drug dependency of the MT-deficient line, the impact of MIL pre-exposure on sand fly infectivity was explored as well. RESULTS: A significant reduction in sand fly infection, stomodeal valve colonization and differentiation into metacyclics (determined by a lower flagellum/cell body length ratio) was observed in both vectors for MIL-R as compared to the isogenic parent MIL-susceptible line. Re-introduction of the wildtype MT gene into MIL-R tended to partially rescue the capacity to infect sand flies. Pre-exposure to MIL did not alter infectivity of the MIL-R line. CONCLUSION: The MIL resistant L. infantum LEM3323 line is significantly hampered in its development and transmissibility potential in two sand fly vector species. Additional studies are warranted to evaluate whether this applies to other visceral Leishmania parasites with acquired MIL-resistance.


Assuntos
Antiprotozoários/farmacologia , Insetos Vetores/parasitologia , Leishmania infantum/crescimento & desenvolvimento , Phlebotomus/parasitologia , Fosforilcolina/análogos & derivados , Psychodidae/parasitologia , Análise de Variância , Animais , Resistência a Medicamentos , Feminino , Concentração Inibidora 50 , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Camundongos , Camundongos Endogâmicos BALB C , Fosforilcolina/farmacologia , Coelhos
12.
PLoS Pathog ; 15(6): e1007828, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242261

RESUMO

The protozoan parasite Leishmania possesses a single flagellum, which is remodelled during the parasite's life cycle from a long motile flagellum in promastigote forms in the sand fly to a short immotile flagellum in amastigotes residing in mammalian phagocytes. This study examined the protein composition and in vivo function of the promastigote flagellum. Protein mass spectrometry and label free protein enrichment testing of isolated flagella and deflagellated cell bodies defined a flagellar proteome for L. mexicana promastigote forms (available via ProteomeXchange with identifier PXD011057). This information was used to generate a CRISPR-Cas9 knockout library of 100 mutants to screen for flagellar defects. This first large-scale knockout screen in a Leishmania sp. identified 56 mutants with altered swimming speed (52 reduced and 4 increased) and defined distinct mutant categories (faster swimmers, slower swimmers, slow uncoordinated swimmers and paralysed cells, including aflagellate promastigotes and cells with curled flagella and disruptions of the paraflagellar rod). Each mutant was tagged with a unique 17-nt barcode, providing a simple barcode sequencing (bar-seq) method for measuring the relative fitness of L. mexicana mutants in vivo. In mixed infections of the permissive sand fly vector Lutzomyia longipalpis, paralysed promastigotes and uncoordinated swimmers were severely diminished in the fly after defecation of the bloodmeal. Subsequent examination of flies infected with a single paralysed mutant lacking the central pair protein PF16 or an uncoordinated swimmer lacking the axonemal protein MBO2 showed that these promastigotes did not reach anterior regions of the fly alimentary tract. These data show that L. mexicana need directional motility for successful colonisation of sand flies.


Assuntos
Flagelos/metabolismo , Leishmania/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Psychodidae/parasitologia , Animais , Flagelos/genética , Leishmania/genética , Proteoma/genética , Proteínas de Protozoários/genética
13.
Int J Parasitol Parasites Wildl ; 8: 118-126, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30740304

RESUMO

Cutaneous leishmaniasis caused by Leishmania major is a typical zoonosis circulating in rodents. In Sub-Saharan Africa the reservoirs remain to be identified, although L. major has been detected in several rodent species including members of the genera Arvicanthis and Mastomys. However, differentiation of true reservoir hosts from incidental hosts requires in-depth studies both in the field and in the laboratory, with the best method for testing the infectiousness of hosts to biting vectors being xenodiagnosis. Here we studied experimental infections of three L. major strains in Arvicanthis neumanni, A. niloticus and Mastomys natalensis; the infections were initiated either with sand fly-derived or with culture-derived Leishmania promastigotes. Inoculated rodents were monitored for several months and tested by xenodiagnoses for their infectiousness to Phlebotomus duboscqi, the natural vector of L. major in Sub-Saharan Africa. The distribution and load of parasites were determined post mortem using qPCR from the blood, skin and viscera samples. The attractiveness of Arvicanthis and Mastomys to P. duboscqi was tested by pair-wise comparisons. Three L. major strains used significantly differed in infectivity: the Middle Eastern strain infected a low proportion of rodents, while two Sub-Saharan isolates (LV109, LV110) infected a high percentage of animals and LV110 also produced higher parasite loads in all host species. All three rodent species maintained parasites of the LV109 strain for 20-25 weeks and were able to infect P. duboscqi without apparent health complications: infected animals showed only temporary swellings or changes of pigmentation at the site of inoculation. However, the higher infection rates, more generalized distribution of parasites and longer infectiousness period to sand flies in M. natalensis suggest that this species plays the more important reservoir role in the life cycle of L. major in Sub-Saharan Africa. Arvicanthis species may serve as potential reservoirs in seasons/periods of low abundance of Mastomys.

14.
Behav Processes ; 157: 133-141, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30267766

RESUMO

Animal populations adopting a commensal way of life, e. g. house mice in buildings and stores, are subject to different selection pressures than those living in a non-commensal environment. This may radically influence their behaviour. This study investigated the effects of a commensal way of life on exploratory behaviour in mice. The focal population was non-commensal Mus musculus musculus from Northern Iran. To assess the effect of commensal way of life on exploratory behaviour, it was compared with commensal M. m. musculus from the Czech Republic and to assess the effect of subspecies, it was compared to non-commensal M. m. domesticus from Eastern Syria. We compared their behaviour in five tests of exploratory behaviour and boldness: an open field test with 1) free exploration and 2) forced exploration, 3) hole-board test, 4) test of vertical activity and 5) elevated plus maze. We detected a significant effect of population on behaviour in all five tests. M. m. domesticus was generally bolder and more active than M. m. musculus. Commensal mice were characterized by a higher level of vertical activity (climbing, rearing, jumping). These results suggest that the specific selection pressures of the commensal lifestyle select mice for higher affinity towards elevated places.


Assuntos
Animais Selvagens , Comportamento Exploratório , Camundongos , Simbiose , Animais , Animais Selvagens/classificação , Animais Selvagens/fisiologia , Animais Selvagens/psicologia , República Tcheca , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos/classificação , Camundongos/fisiologia , Camundongos/psicologia , Atividade Motora , Especificidade da Espécie
15.
PLoS Negl Trop Dis ; 12(4): e0006382, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617364

RESUMO

BACKGROUND: The peritrophic matrix (PM) is an acellular chitin-containing envelope which in most blood sucking insects encloses the ingested blood meal and protects the midgut epithelium. Type I PM present in sand flies and other blood sucking batch feeders is secreted around the meal by the entire midgut in response to feeding. Here we tested the hypothesis that in Sergentomyia schwetzi the PM creates a physical barrier that prevents escape of Leishmania parasites from the endoperitrophic space. METHODOLOGY/PRINCIPAL FINDINGS: Morphology and ultrastructure of the PM as well the production of endogenous chitinase in S. schwetzi were compared with three sand fly species, which are natural vectors of Leishmania. Long persistence of the PM in S. schwetzi was not accompanied by different morphology or decreased production of chitinase. To confirm the role of the PM in refractoriness of S. schwetzi to Leishmania parasites, culture supernatant from the fungus Beauveria bassiana containing chitinase was added to the infective bloodmeal to disintegrate the PM artificially. In females treated with B. bassiana culture supernatants the PM was weakened and permeable, lacking multilayered inner structure; Leishmania colonized the midgut and the stomodeal valve and produced metacyclic forms. In control females Leishmania infections were lost during defecation. CONCLUSIONS/SIGNIFICANCE: Persistence of the PM till defecation of the bloodmeal represents an important factor responsible for refractoriness of S. schwetzi to Leishmania development. Leishmania major as well as L. donovani promastigotes survived defecation and developed late-stage infections only in females with PM disintegrated artificially by B. bassiana culture supernatants containing exogenous chitinase.


Assuntos
Insetos Vetores/parasitologia , Psychodidae/parasitologia , Animais , Sistema Digestório/parasitologia , Sistema Digestório/ultraestrutura , Feminino , Insetos Vetores/fisiologia , Insetos Vetores/ultraestrutura , Leishmania major/fisiologia , Psychodidae/fisiologia , Psychodidae/ultraestrutura , Coelhos
16.
Mem Inst Oswaldo Cruz ; 113(5): e170333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513819

RESUMO

BACKGROUND Leishmania major is an Old World species causing cutaneous leishmaniasis and is transmitted by Phlebotomus papatasi and Phlebotomus duboscqi. In Brazil, two isolates from patients who never left the country were characterised as L. major-like (BH49 and BH121). Using molecular techniques, these isolates were indistinguishable from the L. major reference strain (FV1). OBJECTIVES We evaluated the lipophosphoglycans (LPGs) of the strains and their behaviour in Old and New World sand fly vectors. METHODS LPGs were purified, and repeat units were qualitatively evaluated by immunoblotting. Experimental in vivo infection with L. major-like strains was performed in Lutzomyia longipalpis (New World, permissive vector) and Ph. papatasi (Old World, restrictive or specific vector). FINDINGS The LPGs of both strains were devoid of arabinosylated side chains, whereas the LPG of strain BH49 was more galactosylated than that of strain BH121. All strains with different levels of galactosylation in their LPGs were able to infect both vectors, exhibiting colonisation of the stomodeal valve and metacyclogenesis. The BH121 strain (less galactosylated) exhibited lower infection intensity compared to BH49 and FV1 in both vectors. MAIN CONCLUSIONS Intraspecific variation in the LPG of L. major-like strains occur, and the different galactosylation levels affected interactions with the invertebrate host.


Assuntos
Galactose/metabolismo , Glicoesfingolipídeos/metabolismo , Insetos Vetores/fisiologia , Leishmania major/fisiologia , Phlebotomus/parasitologia , Psychodidae/parasitologia , Animais , Glicoesfingolipídeos/química , Interações Hospedeiro-Patógeno , Insetos Vetores/química , Leishmania major/química , Especificidade da Espécie
17.
Parasit Vectors ; 11(1): 37, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335002

RESUMO

BACKGROUND: Leishmania development in sand flies is confined to the alimentary tract and is closely connected with blood meal digestion. Previously, it has been published that activities of sand fly midgut proteases are harmful to Leishmania, especially to amastigote-promastigote transition forms. However, our experiments with various Leishmania-sand fly pairs gave quite opposite results. METHODS: We evaluated the effect of semi-digested midgut content on different life stages of Leishmania donovani and Leishmania major in vitro. Various morphological forms of parasites, including macrophage-derived amastigotes and transition forms, were incubated 2 h with midguts dissected at various intervals (6-72 h) post-blood meal or with commercially available proteinase, and their viability was determined using flow cytometry. In parallel, using amastigote-initiated experimental infections, we compared development of L. donovani in sand flies that are either susceptible (Phlebotomus argentipes and P. orientalis) or refractory (P. papatasi and Sergentomyia schwetzi) to this parasite. RESULTS: In vitro, sand fly midgut homogenates affected L. major and L. donovani in a similar way; in all sand fly species, the most significant mortality effect was observed by the end of the blood meal digestion process. Surprisingly, the most susceptible Leishmania stages were promastigotes, while mortality of transforming parasites and amastigotes was significantly lower. Parasites were also susceptible to killing by rabbit blood in combination with proteinase, but resistant to proteinase itself. In vivo, L. donovani developed late-stage infections in both natural vectors; in P. argentipes the development was much faster than in P. orientalis. On the other hand, in refractory species P. papatasi and S. schwetzi, promastigotes survived activity of digestive enzymes but were lost during defecation. CONCLUSIONS: We demonstrated that Leishmania transition forms are more resistant to the killing effect of semi-digested blood meal than 24 h-old promastigotes. Data suggest that Leishmania mortality is not caused directly by sand fly proteases, we assume that this mortality results from toxic products of blood meal digestion. Survival of L. donovani promastigotes in refractory sand flies until blood meal defecation, together with similar mortality of Leishmania parasites incubated in vitro with midgut homogenates of susceptible as well as refractory species, contradict the previously raised hypotheses about the role of midgut proteases in sand fly vector competence to Leishmania.


Assuntos
Sangue/metabolismo , Trato Gastrointestinal/parasitologia , Leishmania donovani/fisiologia , Leishmania major/fisiologia , Peptídeo Hidrolases/metabolismo , Phlebotomus/parasitologia , Animais , Sobrevivência Celular , Trato Gastrointestinal/enzimologia , Coelhos
18.
Mem. Inst. Oswaldo Cruz ; 113(5): e170333, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-894920

RESUMO

BACKGROUND Leishmania major is an Old World species causing cutaneous leishmaniasis and is transmitted by Phlebotomus papatasi and Phlebotomus duboscqi. In Brazil, two isolates from patients who never left the country were characterised as L. major-like (BH49 and BH121). Using molecular techniques, these isolates were indistinguishable from the L. major reference strain (FV1). OBJECTIVES We evaluated the lipophosphoglycans (LPGs) of the strains and their behaviour in Old and New World sand fly vectors. METHODS LPGs were purified, and repeat units were qualitatively evaluated by immunoblotting. Experimental in vivo infection with L. major-like strains was performed in Lutzomyia longipalpis (New World, permissive vector) and Ph. papatasi (Old World, restrictive or specific vector). FINDINGS The LPGs of both strains were devoid of arabinosylated side chains, whereas the LPG of strain BH49 was more galactosylated than that of strain BH121. All strains with different levels of galactosylation in their LPGs were able to infect both vectors, exhibiting colonisation of the stomodeal valve and metacyclogenesis. The BH121 strain (less galactosylated) exhibited lower infection intensity compared to BH49 and FV1 in both vectors. MAIN CONCLUSIONS Intraspecific variation in the LPG of L. major-like strains occur, and the different galactosylation levels affected interactions with the invertebrate host.


Assuntos
Humanos , Leishmania major , Glicoproteínas de Membrana Associadas ao Lisossomo , Psychodidae , Interações Hospedeiro-Parasita
19.
Parasit Vectors ; 10(1): 608, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29246180

RESUMO

BACKGROUND: Lipophosphoglycan (LPG) is a dominant surface molecule of Leishmania promastigotes. Its species-specific polymorphisms are found mainly in the sugars that branch off the conserved Gal(ß1,4)Man(α1)-PO4 backbone of repeat units. Leishmania amazonensis is one of the most important species causing human cutaneous leishmaniasis in the New World. Here, we describe LPG intraspecific polymorphisms in two Le. amazonensis reference strains and their role during the development in three sand fly species. RESULTS: Strains isolated from Lutzomyia flaviscutellata (PH8) and from a human patient (Josefa) displayed structural polymorphism in the LPG repeat units, possessing side chains with 1 and 2 ß-glucose or 1 to 3 ß-galactose, respectively. Both strains successfully infected permissive vectors Lutzomyia longipalpis and Lutzomyia migonei and could colonize their stomodeal valve and differentiate into metacyclic forms. Despite bearing terminal galactose residues on LPG, Josefa could not sustain infection in the restrictive vector Phlebotomus papatasi. CONCLUSIONS: LPG polymorphisms did not affect the ability of Le. amazonensis to develop late-stage infections in permissive vectors. However, the non-establishment of infection in Ph. papatasi by Josefa strain suggested other LPG-independent factors in this restrictive vector.


Assuntos
Glicoesfingolipídeos/análise , Leishmania/química , Leishmania/crescimento & desenvolvimento , Psychodidae/parasitologia , Animais , Humanos , Leishmania/isolamento & purificação
20.
PLoS Pathog ; 13(1): e1006130, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095465

RESUMO

Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Leishmania major/patogenicidade , Leishmaniose/transmissão , Proteínas de Protozoários/metabolismo , Virulência/fisiologia , Animais , Antígenos de Protozoários/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Imunofluorescência , Immunoblotting , Insetos Vetores/parasitologia , Leishmania major/crescimento & desenvolvimento , Leishmaniose/genética , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Psychodidae/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...