Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 132(3): 713-732, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30756126

RESUMO

The development of durable host resistance strategies to control crop diseases is a primary need for sustainable agricultural production in the future. This article highlights the potential of recent progress in the understanding of host resistance for future cereal breeding. Much of the novel work is based on advancements in large-scale sequencing and genomics, rapid gene isolation techniques and high-throughput molecular marker technologies. Moreover, emerging applications on the pathogen side like effector identification or field pathogenomics are discussed. The combination of knowledge from both sides of cereal pathosystems will result in new approaches for resistance breeding. We describe future applications and innovative strategies to implement effective and durable strategies to combat diseases of major cereal crops while reducing pesticide dependency.


Assuntos
Resistência à Doença/genética , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Genes de Plantas , Doenças das Plantas/imunologia , Imunidade Vegetal/genética
2.
Transgenic Res ; 28(1): 9-20, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30302615

RESUMO

Pm3 from wheat encodes a nucleotide-binding leucine-rich repeat type of receptor and confers resistance to powdery mildew caused by the fungal pathogen Blumeria graminis f.sp. tritici (Bgt). Each of the 17 functional Pm3 alleles identified so far confers resistance to a distinct spectrum of Bgt isolates. Variant Pm3e has been found in wheat donor line W150 and differs only by two amino acids from the non-functional variant Pm3CS. In order to evaluate the capability of Pm3e to provide powdery mildew field resistance, we generated transgenic Pm3e lines by biolistic transformation of the powdery mildew susceptible spring wheat cultivar Bobwhite. Field trials conducted during four field seasons in Switzerland showed significant and strong powdery mildew resistance of the Pm3e transgenic lines, whereas the corresponding biological sister lines, not containing the transgene, were severely powdery mildew infected. Thus Pm3e alone is responsible for the strong resistance phenotype. The field grown transgenic lines showed high transgene expression and Pm3e protein accumulation with no fitness costs on plant development and yield associated with Pm3e abundance. Line E#1 as well as sister line E#1 showed delayed flowering due to somaclonal variation. The study shows the capability of Pm3e in providing strong powdery mildew field resistance, making its use in wheat breeding programs very promising.


Assuntos
Resistência à Doença/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Triticum/genética , Alelos , Ascomicetos/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Triticum/crescimento & desenvolvimento
3.
Front Plant Sci ; 9: 1358, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283476

RESUMO

Although oat cultivation around the Mediterranean basin is steadily increasing, its yield in these regions lags far behind those of Northern Europe. This results mainly from the poor adaptation of current oat cultivars to Mediterranean environments. Local landraces may act as reservoirs of favorable traits that could contribute to increase oat resilience in this region. To aid selection of suitable agro-climate adapted genotypes we integrated genome-wide association approaches with analysis of field assessed phenotypes of genetic variants and of the weight of associated markers across different environmental variables. Association models accounting for oat population structure were applied on either arithmetic means or best linear unbiased prediction (BLUPs) to ensure robust identification of associations with the agronomic traits evaluated. The meta-analysis of the six joint environments (mega-environment) identified several markers associated with several agronomic traits and crown rust severity. Five of these associated markers were located within expressed genes. These associations were only mildly influenced by climatic variables indicating that these markers are good candidates to improve the genetic potential of oat under Mediterranean conditions. The models also highlighted several marker-trait associations, strongly affected by particular climatic variables including high rain pre- or post-heading dates and high temperatures, revealing strong potential for oat adaptation to specific agro-climatic conditions. These results will contribute to increase oat resilience for particular climatic conditions and facilitate breeding for plant adaptation to a wider range of climatic conditions in the current scenario of climate change.

4.
Plant Mol Biol ; 98(3): 249-260, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30244408

RESUMO

KEY MESSAGE: We have isolated a novel powdery mildew resistance gene in wheat that was originally introgressed from rye. Further analysis revealed evolutionary divergent history of wheat and rye orthologous resistance genes. Wheat production is under constant threat from a number of fungal pathogens, among them is wheat powdery mildew (Blumeria graminis f. sp. tritici). Deployment of resistance genes is the most economical and sustainable method for mildew control. However, domestication and selective breeding have narrowed genetic diversity of modern wheat germplasm, and breeders have relied on wheat relatives for enriching its gene pool through introgression. Translocations where the 1RS chromosome arm was introgressed from rye to wheat have improved yield and resistance against various pathogens. Here, we isolated the Pm17 mildew resistance gene located on the 1RS introgression in wheat cultivar 'Amigo' and found that it is an allele or a close paralog of the Pm8 gene isolated earlier from 'Petkus' rye. Functional validation using transient and stable transformation confirmed the identity of Pm17. Analysis of Pm17 and Pm8 coding regions revealed an overall identity of 82.9% at the protein level, with the LRR domains being most divergent. Our analysis also showed that the two rye genes are much more diverse compared to the variants encoded by the Pm3 gene in wheat, which is orthologous to Pm17/Pm8 as concluded from highly conserved upstream sequences in all these genes. Thus, the evolutionary history of these orthologous loci differs in the cereal species rye and wheat and demonstrates that orthologous resistance genes can take different routes towards functionally active genes. These findings suggest that the isolation of Pm3/Pm8/Pm17 orthologs from other grass species, additional alleles from the rye germplasm as well as possibly synthetic variants will result in novel resistance genes useful in wheat breeding.


Assuntos
Evolução Biológica , Variação Genética , Proteínas de Plantas/metabolismo , Secale/genética , Triticum/genética , Predisposição Genética para Doença , Especiação Genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética
5.
Front Plant Sci ; 9: 1077, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131815

RESUMO

Although often investigated within the context of plant growth and development and/or seed composition, plant lipids have roles in responses to environment. To dissect changes in lipid and fatty acid composition linked to drought tolerance responses in oats, we performed a detailed profiling of (>90) different lipids classes during a time course of water stress. We used two oat cultivars, Flega and Patones previously characterized as susceptible and tolerant to drought, respectively. Significant differences in lipid classes (mono, di and triacylglycerols; [respectively MAG, DAG, and TAG] and free fatty acids [FFA]) and in their fatty acid (FA) composition was observed between cultivars upon drought stress. In Flega there was an increase of saturated FAs, in particular 16:0 in the DAG and TAG fractions. This led to significant lower values of the double bond index and polyunsaturated/saturated ratio in Flega compared with Patones. By contrast, Patones was characterized by the early induction of signaling-related lipids and fatty acids, such as DAGs and linolenic acid. Since the latter is a precursor of jasmonates, we investigated further changes of this signaling molecule. Targeted measurements of jasmonic acid (JA) and Ile-JA indicated early increases in the concentrations of these molecules in Patones upon drought stress whereas no changes were observed in Flega. Altogether, these data suggest a role for jasmonates and specific fatty acids in different lipid classes in coping with drought stress in oat.

6.
New Phytol ; 213(3): 1301-1314, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27935041

RESUMO

There is a large diversity of genetically defined resistance genes in bread wheat against the powdery mildew pathogen Blumeria graminis (B. g.) f. sp. tritici. Many confer race-specific resistance to this pathogen, but until now only the mildew avirulence gene AvrPm3a2/f2 that is recognized by Pm3a/f was known molecularly. We performed map-based cloning and genome-wide association studies to isolate a candidate for the mildew avirulence gene AvrPm2. We then used transient expression assays in Nicotiana benthamiana to demonstrate specific and strong recognition of AvrPm2 by Pm2. The virulent AvrPm2 allele arose from a conserved 12 kb deletion, while there is no protein sequence diversity in the gene pool of avirulent B. g. tritici isolates. We found one polymorphic AvrPm2 allele in B. g. triticale and one orthologue in B. g. secalis and both are recognized by Pm2. AvrPm2 belongs to a small gene family encoding structurally conserved RNase-like effectors, including Avra13 from B. g. hordei, the cognate Avr of the barley resistance gene Mla13. These results demonstrate the conservation of functional avirulence genes in two cereal powdery mildews specialized on different hosts, thus providing a possible explanation for successful introgression of resistance genes from rye or other grass relatives to wheat.


Assuntos
Ascomicetos/patogenicidade , Sequência Conservada , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Ribonucleases/metabolismo , Secale/microbiologia , Triticum/microbiologia , Sequência de Aminoácidos , Ascomicetos/genética , Proteínas Fúngicas/química , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Estudo de Associação Genômica Ampla , Modelos Moleculares , Filogenia , Mapeamento Físico do Cromossomo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tabaco/microbiologia , Virulência
7.
Front Plant Sci ; 7: 1660, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877184

RESUMO

Stomatal dysfunction known as "locking" has been linked to the elicitation of a hypersensitive response (HR) following attack of fungal pathogens in cereals. We here assess how spatial and temporal patterns of different resistance mechanisms, such as HR and penetration resistance influence stomatal and photosynthetic parameters in oat (Avena sativa) and the possible involvement of hydrogen peroxide (H2O2) in the dysfunctions observed. Four oat cultivars with differential resistance responses (i.e., penetration resistance, early and late HR) to powdery mildew (Blumeria graminis f. sp. avenae, Bga) were used. Results demonstrated that stomatal dysfunctions were genotype but not response-type dependent since genotypes with similar resistance responses when assessed histologically showed very different locking patterns. Maximum quantum yield (Fv/Fm) of photosystem II were compromised in most Bga-oat interactions and photoinhibition increased. However, the extent of the photosynthetic alterations was not directly related to the extent of HR. H2O2 generation is triggered during the execution of resistance responses and can influence stomatal function. Artificially increasing H2O2 by exposing plants to increased light intensity further reduced Fv/Fm ratios and augmented the patterns of stomatal dysfunctions previously observed. The latter results suggest that the observed dysfunctions and hence a cost of resistance may be linked with oxidative stress occurring during defense induced photosynthetic disruption.

8.
Genome Biol ; 17(1): 221, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27795210

RESUMO

Identification of causal mutations in barley and wheat is hampered by their large genomes and suppressed recombination. To overcome these obstacles, we have developed MutChromSeq, a complexity reduction approach based on flow sorting and sequencing of mutant chromosomes, to identify induced mutations by comparison to parental chromosomes. We apply MutChromSeq to six mutants each of the barley Eceriferum-q gene and the wheat Pm2 genes. This approach unambiguously identified single candidate genes that were verified by Sanger sequencing of additional mutants. MutChromSeq enables reference-free forward genetics in barley and wheat, thus opening up their pan-genomes to functional genomics.


Assuntos
Cromossomos de Plantas , Clonagem Molecular , Genes de Plantas , Hordeum/genética , Mutação , Triticum/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
9.
Front Plant Sci ; 6: 103, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798140

RESUMO

Diseases caused by crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) are among the most important constraints for the oat crop. Breeding for resistance is one of the most effective, economical, and environmentally friendly means to control these diseases. The purpose of this work was to identify elite alleles for rust and powdery mildew resistance in oat by association mapping to aid selection of resistant plants. To this aim, 177 oat accessions including white and red oat cultivars and landraces were evaluated for disease resistance and further genotyped with 31 simple sequence repeat and 15,000 Diversity Arrays Technology (DArT) markers to reveal association with disease resistance traits. After data curation, 1712 polymorphic markers were considered for association analysis. Principal component analysis and a Bayesian clustering approach were applied to infer population structure. Five different general and mixed linear models accounting for population structure and/or kinship corrections and two different statistical tests were carried out to reduce false positive. Five markers, two of them highly significant in all models tested were associated with rust resistance. No strong association between any marker and powdery mildew resistance at the seedling stage was identified. However, one DArT sequence, oPt-5014, was strongly associated with powdery mildew resistance in adult plants. Overall, the markers showing the strongest association in this study provide ideal candidates for further studies and future inclusion in strategies of marker-assisted selection.

10.
Plant Cell Environ ; 38(7): 1434-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25533379

RESUMO

Although a wealth of information is available on the induction of one or several drought-related responses in different species, little is known of how their timing, modulation and crucially integration influence drought tolerance. Based upon metabolomic changes in oat (Avena sativa L.), we have defined key processes involved in drought tolerance. During a time course of increasing water deficit, metabolites from leaf samples were profiled using direct infusion-electrospray mass spectroscopy (DI-ESI-MS) and high-performance liquid chromatography (HPLC) ESI-MS/MS and analysed using principal component analysis (PCA) and discriminant function analysis (DFA). The involvement of metabolite pathways was confirmed through targeted assays of key metabolites and physiological experiments. We demonstrate an early accumulation of salicylic acid (SA) influencing stomatal opening, photorespiration and antioxidant defences before any change in the relative water content. These changes are likely to maintain plant water status, with any photoinhibitory effect being counteracted by an efficient antioxidant capacity, thereby representing an integrated mechanism of drought tolerance in oats. We also discuss these changes in relation to those engaged at later points, consequence of the different water status in susceptible and resistant genotypes.


Assuntos
Antioxidantes/metabolismo , Avena/fisiologia , Carbono/metabolismo , Metabolômica , Transdução de Sinais , Avena/efeitos da radiação , Membrana Celular/metabolismo , Respiração Celular , Clorofila/metabolismo , Secas , Glutationa/metabolismo , Glioxilatos/metabolismo , Luz , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Prolina/metabolismo , Ácido Salicílico/metabolismo , Água/metabolismo
11.
Planta ; 236(5): 1529-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22824964

RESUMO

In this study, we find and characterize the sources of tolerance to drought amongst an oat (Avena sativa L.) germplasm collection of 174 landraces and cultivars. We used multivariate analysis, non-supervised principal component analyses (PCA) and supervised discriminant function analyses (DFA) to suggest the key mechanism/s responsible for coping with drought stress. Following initial assessment of drought symptoms and area under the drought progress curve, a subset of 14 accessions were selected for further analysis. The collection was assessed for relative water content (RWC), cell membrane stability, stomatal conductance (g (1)), leaf temperature, water use efficiency (WUE), lipid peroxidation, lipoxygenase activity, chlorophyll levels and antioxidant capacity during a drought time course experiment. Without the use of multivariate approaches, it proved difficult to unequivocally link drought tolerance to specific physiological processes in the different resistant oat accessions. These approaches allowed the ranking of many supposed drought tolerance traits in the order of degree of importance within this crop, thereby highlighting those with a causal relationship to drought stress tolerance. Analyses of the loading vectors used to derive the PCA and DFA models indicated that two traits involved in water relations, temperature and RWC together with the area of drought curves, were important indicators of drought tolerance. However, other parameters involved in water use such as g (1) and WUE were less able to discriminate between the accessions. These observations validate our approach which should be seen as representing a cost-effective initial screen that could be subsequently employed to target drought tolerance in segregating populations.


Assuntos
Avena/fisiologia , Secas , Estresse Fisiológico , Antioxidantes/metabolismo , Membrana Celular/fisiologia , Clorofila/metabolismo , Desidratação , Peroxidação de Lipídeos , Lipoxigenases/metabolismo , Herança Multifatorial , Análise Multivariada , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Análise de Componente Principal , Temperatura Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA