Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 134(19): 1645-1657, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31420334

RESUMO

Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality. To advance our understanding of the biology contributing to VTE, we conducted a genome-wide association study (GWAS) of VTE and a transcriptome-wide association study (TWAS) based on imputed gene expression from whole blood and liver. We meta-analyzed GWAS data from 18 studies for 30 234 VTE cases and 172 122 controls and assessed the association between 12 923 718 genetic variants and VTE. We generated variant prediction scores of gene expression from whole blood and liver tissue and assessed them for association with VTE. Mendelian randomization analyses were conducted for traits genetically associated with novel VTE loci. We identified 34 independent genetic signals for VTE risk from GWAS meta-analysis, of which 14 are newly reported associations. This included 11 newly associated genetic loci (C1orf198, PLEK, OSMR-AS1, NUGGC/SCARA5, GRK5, MPHOSPH9, ARID4A, PLCG2, SMG6, EIF5A, and STX10) of which 6 replicated, and 3 new independent signals in 3 known genes. Further, TWAS identified 5 additional genetic loci with imputed gene expression levels differing between cases and controls in whole blood (SH2B3, SPSB1, RP11-747H7.3, RP4-737E23.2) and in liver (ERAP1). At some GWAS loci, we found suggestive evidence that the VTE association signal for novel and previously known regions colocalized with expression quantitative trait locus signals. Mendelian randomization analyses suggested that blood traits may contribute to the underlying risk of VTE. To conclude, we identified 16 novel susceptibility loci for VTE; for some loci, the association signals are likely mediated through gene expression of nearby genes.

2.
Int J Mol Sci ; 20(13)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262040

RESUMO

(1) Background: In a previous study, we found that two phenotypes related to platelet reactivity, measured with the PFA-100 system, were highly heritable. The aim of the present study was to identify genetic determinants that influence the variability of these phenotypes: closure time of collagen-ADP (Col-ADP) and of collagen-epinephrine (Col-Epi). (2) Methods: As part of the GAIT-2 (Genetic Analysis of Idiopathic Thrombophilia (2) Project, 935 individuals from 35 large Spanish families were studied. A genome-wide association study (GWAS) with ≈ 10 M single nucleotide polymorphisms (SNPs) was carried out with Col-ADP and Col-Epi phenotypes. (3) Results: The study yielded significant genetic signals that mapped to the ABO locus. After adjusting both phenotypes for the ABO genotype, these signals disappeared. After adjusting for von Willebrand factor (VWF) or for coagulation factor VIII (FVIII), the significant signals disappeared totally for Col-Epi phenotype but only partially for Col-ADP phenotype. (4) Conclusion: Our results suggest that the ABO locus exerts the main genetic influence on PFA-100 phenotypes. However, while the effect of the ABO locus on Col-Epi phenotype is mediated through VWF and/or FVIII, the effect of the ABO locus on Col-ADP phenotype is partly produced through VWF and/or FVIII, and partly through other mechanisms.

3.
Blood ; 133(9): 967-977, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30642921

RESUMO

Factor VII (FVII) is an important component of the coagulation cascade. Few genetic loci regulating FVII activity and/or levels have been discovered to date. We conducted a meta-analysis of 9 genome-wide association studies of plasma FVII levels (7 FVII activity and 2 FVII antigen) among 27 495 participants of European and African ancestry. Each study performed ancestry-specific association analyses. Inverse variance weighted meta-analysis was performed within each ancestry group and then combined for a trans-ancestry meta-analysis. Our primary analysis included the 7 studies that measured FVII activity, and a secondary analysis included all 9 studies. We provided functional genomic validation for newly identified significant loci by silencing candidate genes in a human liver cell line (HuH7) using small-interfering RNA and then measuring F7 messenger RNA and FVII protein expression. Lastly, we used meta-analysis results to perform Mendelian randomization analysis to estimate the causal effect of FVII activity on coronary artery disease, ischemic stroke (IS), and venous thromboembolism. We identified 2 novel (REEP3 and JAZF1-AS1) and 6 known loci associated with FVII activity, explaining 19.0% of the phenotypic variance. Adding FVII antigen data to the meta-analysis did not result in the discovery of further loci. Silencing REEP3 in HuH7 cells upregulated FVII, whereas silencing JAZF1 downregulated FVII. Mendelian randomization analyses suggest that FVII activity has a positive causal effect on the risk of IS. Variants at REEP3 and JAZF1 contribute to FVII activity by regulating F7 expression levels. FVII activity appears to contribute to the etiology of IS in the general population.


Assuntos
Isquemia Encefálica/etiologia , Fator VII/genética , Estudo de Associação Genômica Ampla , Proteínas de Membrana Transportadoras/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral/etiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Estudos de Coortes , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Fator VII/metabolismo , Feminino , Seguimentos , Loci Gênicos , Predisposição Genética para Doença , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Fenótipo , Prognóstico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/metabolismo , Tromboembolia Venosa/patologia
4.
Circulation ; 139(5): 620-635, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30586737

RESUMO

BACKGROUND: Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are associated with risk of arterial and venous thrombosis and with hemorrhagic disorders. We aimed to identify and functionally test novel genetic associations regulating plasma FVIII and VWF. METHODS: We meta-analyzed genome-wide association results from 46 354 individuals of European, African, East Asian, and Hispanic ancestry. All studies performed linear regression analysis using an additive genetic model and associated ≈35 million imputed variants with natural log-transformed phenotype levels. In vitro gene silencing in cultured endothelial cells was performed for candidate genes to provide additional evidence on association and function. Two-sample Mendelian randomization analyses were applied to test the causal role of FVIII and VWF plasma levels on the risk of arterial and venous thrombotic events. RESULTS: We identified 13 novel genome-wide significant ( P≤2.5×10-8) associations, 7 with FVIII levels ( FCHO2/TMEM171/TNPO1, HLA, SOX17/RP1, LINC00583/NFIB, RAB5C-KAT2A, RPL3/TAB1/SYNGR1, and ARSA) and 11 with VWF levels ( PDHB/PXK/KCTD6, SLC39A8, FCHO2/TMEM171/TNPO1, HLA, GIMAP7/GIMAP4, OR13C5/NIPSNAP, DAB2IP, C2CD4B, RAB5C-KAT2A, TAB1/SYNGR1, and ARSA), beyond 10 previously reported associations with these phenotypes. Functional validation provided further evidence of association for all loci on VWF except ARSA and DAB2IP. Mendelian randomization suggested causal effects of plasma FVIII activity levels on venous thrombosis and coronary artery disease risk and plasma VWF levels on ischemic stroke risk. CONCLUSIONS: The meta-analysis identified 13 novel genetic loci regulating FVIII and VWF plasma levels, 10 of which we validated functionally. We provide some evidence for a causal role of these proteins in thrombotic events.

5.
Am J Hum Genet ; 103(5): 691-706, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388399

RESUMO

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10-8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.

7.
Stroke ; 49(11): 2761-2763, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30355187

RESUMO

Background and Purpose- FXI (factor XI) is involved in thrombus propagation and stabilization. It is unknown whether lower FXI levels have a protective effect on risk of ischemic stroke (IS) or myocardial infarction. This study investigated the effect of genetically determined FXI levels on risk of IS, myocardial infarction, and intracerebral hemorrhage. Methods- Two-sample Mendelian randomization analysis was performed. Instruments and genetic association estimates for FXI levels were obtained from a genome-wide association study of 16 169 individuals. Genetic association estimates for IS and its etiological subtypes were obtained from a study of 16 851 cases and 32 473 controls. For myocardial infarction, estimates were obtained from a study of 43 676 cases and 123 504 controls and for intracerebral hemorrhage from a study of 1545 cases and 1481 controls. Results- After applying a Bonferroni correction for multiple testing, the Mendelian randomization analysis supported a causal effect of higher, genetically determined FXI levels on risk of any IS (odds ratio [OR] per 1-unit increase in natural logarithm-transformed FXI levels, 2.54; 95% CI, 1.68-3.84; P=1×10-5) but not myocardial infarction (OR, 1.01; 95% CI, 0.76-1.34; P=0.94) or intracerebral hemorrhage (OR, 1.81; 95% CI, 0.44-7.38; P=0.41). Examining IS subtypes, the main results supported an effect of higher, genetically determined FXI levels on risk of cardioembolism (OR, 4.23; 95% CI, 1.94-9.19; P=3×10-4) and IS of undetermined cause (OR, 3.44; 95% CI, 1.79-6.60; P=2×10-4) but not large artery atherosclerosis (OR, 2.73; 95% CI, 1.15-6.45; P=0.02) or small artery occlusion (OR, 1.19; 95% CI, 0.50-2.82; P=0.69). However, the statistically significant result for IS of undetermined cause was not replicated in all sensitivity analyses. Conclusions- We find Mendelian randomization evidence supporting FXI as a possible target to reduce risk of the cardioembolic subtype of IS.

8.
PLoS Genet ; 13(4): e1006706, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28369058

RESUMO

Recent advances in highly multiplexed immunoassays have allowed systematic large-scale measurement of hundreds of plasma proteins in large cohort studies. In combination with genotyping, such studies offer the prospect to 1) identify mechanisms involved with regulation of protein expression in plasma, and 2) determine whether the plasma proteins are likely to be causally implicated in disease. We report here the results of genome-wide association (GWA) studies of 83 proteins considered relevant to cardiovascular disease (CVD), measured in 3,394 individuals with multiple CVD risk factors. We identified 79 genome-wide significant (p<5e-8) association signals, 55 of which replicated at P<0.0007 in separate validation studies (n = 2,639 individuals). Using automated text mining, manual curation, and network-based methods incorporating information on expression quantitative trait loci (eQTL), we propose plausible causal mechanisms for 25 trans-acting loci, including a potential post-translational regulation of stem cell factor by matrix metalloproteinase 9 and receptor-ligand pairs such as RANK-RANK ligand. Using public GWA study data, we further evaluate all 79 loci for their causal effect on coronary artery disease, and highlight several potentially causal associations. Overall, a majority of the plasma proteins studied showed evidence of regulation at the genetic level. Our results enable future studies of the causal architecture of human disease, which in turn should aid discovery of new drug targets.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/genética , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Locos de Características Quantitativas , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino
9.
Hum Mol Genet ; 26(3): 637-649, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28053049

RESUMO

Coagulation factor XI (FXI) has become increasingly interesting for its role in pathogenesis of thrombosis. While elevated plasma levels of FXI have been associated with venous thromboembolism and ischemic stroke, its deficiency is associated with mild bleeding. We aimed to determine novel genetic and post-transcriptional plasma FXI regulators.We performed a genome-wide association study (GWAS) for plasma FXI levels, using novel data imputed to the 1000 Genomes reference panel. Individual GWAS analyses, including a total of 16,169 European individuals from the ARIC, GHS, MARTHA and PROCARDIS studies, were meta-analysed and further replicated in 2,045 individuals from the F5L family, GAIT2 and MEGA studies. Additional association with activated partial thromboplastin time (aPTT) was tested for the top SNPs. In addition, a study on the effect of miRNA on FXI regulation was performed using in silico prediction tools and in vitro luciferase assays.Three loci showed robust, replicating association with circulating FXI levels: KNG1 (rs710446, P-value = 2.07 × 10-302), F11 (rs4253417, P-value = 2.86 × 10-193), and a novel association in GCKR (rs780094, P-value = 3.56 ×10-09), here for the first time implicated in FXI regulation. The two first SNPs (rs710446 and rs4253417) also associated with aPTT. Conditional and haplotype analyses demonstrated a complex association signal, with additional novel SNPs modulating plasma FXI levels in both the F11 and KNG1 loci. Finally, eight miRNAs were predicted to bind F11 mRNA. Over-expression of either miR-145 or miR-181 significantly reduced the luciferase activity in cells transfected with a plasmid containing FXI-3'UTR.These results should open the door to new therapeutic targets for thrombosis prevention.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Moléculas de Adesão Celular/sangue , Cininogênios/genética , Receptores de Superfície Celular/sangue , Trombose/genética , Moléculas de Adesão Celular/genética , Simulação por Computador , Feminino , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Tempo de Tromboplastina Parcial , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional/genética , Receptores de Superfície Celular/genética , Trombose/sangue , Trombose/fisiopatologia
10.
PLoS One ; 12(1): e0167742, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107422

RESUMO

An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10-8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10-8), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development.


Assuntos
Estudo de Associação Genômica Ampla , Projeto HapMap , Humanos
11.
Nat Genet ; 48(11): 1303-1312, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27668658

RESUMO

Large-scale whole-genome sequence data sets offer novel opportunities to identify genetic variation underlying human traits. Here we apply genotype imputation based on whole-genome sequence data from the UK10K and 1000 Genomes Project into 35,981 study participants of European ancestry, followed by association analysis with 20 quantitative cardiometabolic and hematological traits. We describe 17 new associations, including 6 rare (minor allele frequency (MAF) < 1%) or low-frequency (1% < MAF < 5%) variants with platelet count (PLT), red blood cell indices (MCH and MCV) and HDL cholesterol. Applying fine-mapping analysis to 233 known and new loci associated with the 20 traits, we resolve the associations of 59 loci to credible sets of 20 or fewer variants and describe trait enrichments within regions of predicted regulatory function. These findings improve understanding of the allelic architecture of risk factors for cardiometabolic and hematological diseases and provide additional functional insights with the identification of potentially novel biological targets.


Assuntos
Loci Gênicos , Genoma Humano , Estudo de Associação Genômica Ampla , Cardiopatias/genética , Doenças Hematológicas/genética , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Locos de Características Quantitativas , Análise de Sequência de DNA
12.
Hum Mol Genet ; 25(18): 4094-4106, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466198

RESUMO

It has been hypothesized that low frequency (1-5% minor allele frequency (MAF)) and rare (<1% MAF) variants with large effect sizes may contribute to the missing heritability in complex traits. Here, we report an association analysis of lipid traits (total cholesterol, LDL-cholesterol, HDL-cholesterol triglycerides) in up to 27 312 individuals with a comprehensive set of low frequency coding variants (ExomeChip), combined with conditional analysis in the known lipid loci. No new locus reached genome-wide significance. However, we found a new lead variant in 26 known lipid association regions of which 16 were >1000-fold more significant than the previous sentinel variant and not in close LD (six had MAF <5%). Furthermore, conditional analysis revealed multiple independent signals (ranging from 1 to 5) in a third of the 98 lipid loci tested, including rare variants. Addition of our novel associations resulted in between 1.5- and 2.5-fold increase in the proportion of heritability explained for the different lipid traits. Our findings suggest that rare coding variants contribute to the genetic architecture of lipid traits.


Assuntos
HDL-Colesterol/genética , LDL-Colesterol/genética , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Adolescente , Adulto , Idoso , Criança , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Grupo com Ancestrais do Continente Europeu , Exoma/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Lipídeos/sangue , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Triglicerídeos/sangue , Triglicerídeos/genética
13.
Arterioscler Thromb Vasc Biol ; 36(9): 1947-61, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27470516

RESUMO

OBJECTIVE: Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability. APPROACH AND RESULTS: Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation. CONCLUSIONS: We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Doenças das Artérias Carótidas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas dos Microfilamentos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Autoantígenos/genética , Proteínas de Ligação ao Cálcio/genética , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/fisiopatologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Estudos de Casos e Controles , Desdiferenciação Celular , Células Cultivadas , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Regulação para Baixo , Estudos de Associação Genética , Humanos , Proteínas de Filamentos Intermediários/genética , Proteínas com Domínio LIM/genética , Masculino , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Transfecção , Vasoconstrição
14.
Hum Mol Genet ; 25(9): 1867-74, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908601

RESUMO

Thrombotic diseases are among the leading causes of morbidity and mortality in the world. To add insights into the genetic regulation of thrombotic disease, we conducted a genome-wide association study (GWAS) of 6135 self-reported blood clots events and 252 827 controls of European ancestry belonging to the 23andMe cohort of research participants. Eight loci exceeded genome-wide significance. Among the genome-wide significant results, our study replicated previously known venous thromboembolism (VTE) loci near the F5, FGA-FGG, F11, F2, PROCR and ABO genes, and the more recently discovered locus near SLC44A2 In addition, our study reports for the first time a genome-wide significant association between rs114209171, located upstream of the F8 structural gene, and thrombosis risk. Analyses of expression profiles and expression quantitative trait loci across different tissues suggested SLC44A2, ILF3 and AP1M2 as the three most plausible candidate genes for the chromosome 19 locus, our only genome-wide significant thrombosis-related locus that does not harbor likely coagulation-related genes. In addition, we present data showing that this locus also acts as a novel risk factor for stroke and coronary artery disease (CAD). In conclusion, our study reveals novel common genetic risk factors for VTE, stroke and CAD and provides evidence that self-reported data on blood clots used in a GWAS yield results that are comparable with those obtained using clinically diagnosed VTE. This observation opens up the potential for larger meta-analyses, which will enable elucidation of the genetics of thrombotic diseases, and serves as an example for the genetic study of other diseases.


Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Trombose/genética , Complexo 1 de Proteínas Adaptadoras/genética , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Adolescente , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Proteínas do Fator Nuclear 90/genética , Fatores de Risco , Autorrelato , Adulto Jovem
15.
Hum Mol Genet ; 25(2): 358-70, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26561523

RESUMO

Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including ∼120 000 participants of European ancestry (95 806 participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million indels were examined. We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. There were no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1. Together the 41 loci explain 3% of the variance in plasma fibrinogen concentration.


Assuntos
Fibrinogênio/análise , Loci Gênicos , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Fibrinogênio/genética , Estudo de Associação Genômica Ampla , Humanos , Mutação INDEL , Masculino , Pessoa de Meia-Idade
16.
J Am Heart Assoc ; 4(8): e001853, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26276317

RESUMO

BACKGROUND: Plasma adiponectin levels have previously been inversely associated with carotid intima-media thickness (IMT), a marker of subclinical atherosclerosis. In this study, we used a sex-stratified Mendelian randomization approach to investigate whether adiponectin has a causal protective influence on IMT. METHODS AND RESULTS: Baseline plasma adiponectin concentration was tested for association with baseline IMT, IMT progression over 30 months, and occurrence of cardiovascular events within 3 years in 3430 participants (women, n=1777; men, n=1653) with high cardiovascular risk but no prevalent disease. Plasma adiponectin levels were inversely associated with baseline mean bifurcation IMT after adjustment for established risk factors (ß=-0.018, P<0.001) in men but not in women (ß=-0.006, P=0.185; P for interaction=0.061). Adiponectin levels were inversely associated with progression of mean common carotid IMT in men (ß=-0.0022, P=0.047), whereas no association was seen in women (0.0007, P=0.475; P for interaction=0.018). Moreover, we observed that adiponectin levels were inversely associated with coronary events in women (hazard ratio 0.57, 95% CI 0.37 to 0.87) but not in men (hazard ratio 0.82, 95% CI 0.54 to 1.25). A gene score of adiponectin-raising alleles in 6 loci, reported recently in a large multi-ethnic meta-analysis, was inversely associated with baseline mean bifurcation IMT in men (ß=-0.0008, P=0.004) but not in women (ß=-0.0003, P=0.522; P for interaction=0.007). CONCLUSIONS: This report provides some evidence for adiponectin protecting against atherosclerosis, with effects being confined to men; however, compared with established cardiovascular risk factors, the effect of plasma adiponectin was modest. Further investigation involving mechanistic studies is warranted.


Assuntos
Adiponectina/sangue , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/diagnóstico por imagem , Artéria Carótida Primitiva/diagnóstico por imagem , Espessura Intima-Media Carotídea , Adiponectina/genética , Idoso , Biomarcadores/sangue , Doenças das Artérias Carótidas/epidemiologia , Doenças das Artérias Carótidas/genética , Progressão da Doença , Europa (Continente)/epidemiologia , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes , Prognóstico , Fatores de Proteção , Medição de Risco , Fatores de Risco , Fatores Sexuais , Fatores de Tempo
17.
Blood ; 126(11): e19-29, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26105150

RESUMO

Fibrinogen, coagulation factor VII (FVII), and factor VIII (FVIII) and its carrier von Willebrand factor (vWF) play key roles in hemostasis. Previously identified common variants explain only a small fraction of the trait heritabilities, and additional variations may be explained by associations with rarer variants with larger effects. The aim of this study was to identify low-frequency (minor allele frequency [MAF] ≥0.01 and <0.05) and rare (MAF <0.01) variants that influence plasma concentrations of these 4 hemostatic factors by meta-analyzing exome chip data from up to 76,000 participants of 4 ancestries. We identified 12 novel associations of low-frequency (n = 2) and rare (n = 10) variants across the fibrinogen, FVII, FVIII, and vWF traits that were independent of previously identified associations. Novel loci were found within previously reported genes and had effect sizes much larger than and independent of previously identified common variants. In addition, associations at KCNT1, HID1, and KATNB1 identified new candidate genes related to hemostasis for follow-up replication and functional genomic analysis. Newly identified low-frequency and rare-variant associations accounted for modest amounts of trait variance and therefore are unlikely to increase predicted trait heritability but provide new information for understanding individual variation in hemostasis pathways.


Assuntos
Fator VIII/genética , Fator VIII/metabolismo , Fator VII/genética , Fator VII/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Estudos de Coortes , Frequência do Gene , Estudos de Associação Genética , Variação Genética , Humanos , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Canais de Potássio/genética
18.
Nat Commun ; 6: 5897, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25631608

RESUMO

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (ß=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (ß=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (ß=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (ß=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Jejum/sangue , Predisposição Genética para Doença , Variação Genética , Taxa de Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Grupo com Ancestrais do Continente Africano/genética , Diabetes Mellitus Tipo 2/sangue , Grupo com Ancestrais do Continente Europeu/genética , Estudos de Associação Genética , Loci Gênicos , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Glucose-6-Fosfatase/genética , Humanos , Insulina/sangue , Polimorfismo de Nucleotídeo Único/genética
19.
PLoS One ; 9(8): e104082, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093840

RESUMO

Chronic obstructive pulmonary disease (COPD) independently associates with an increased risk of coronary artery disease (CAD), but it has not been fully investigated whether this co-morbidity involves shared pathophysiological mechanisms. To identify potential common pathways across the two diseases, we tested all recently published single nucleotide polymorphisms (SNPs) associated with human lung function (spirometry) for association with carotid intima-media thickness (cIMT) in 3,378 subjects with multiple CAD risk factors, and for association with CAD in a case-control study of 5,775 CAD cases and 7,265 controls. SNPs rs2865531, located in the CFDP1 gene, and rs9978142, located in the KCNE2 gene, were significantly associated with CAD. In addition, SNP rs9978142 and SNP rs3995090 located in the HTR4 gene, were associated with average and maximal cIMT measures. Genetic risk scores combining the most robustly spirometry-associated SNPs from the literature were modestly associated with CAD, (odds ratio (OR) (95% confidence interval (CI95) = 1.06 (1.03, 1.09); P-value = 1.5 × 10(-4), per allele). In conclusion, our study suggests that some genetic loci implicated in determining human lung function also influence cIMT and susceptibility to CAD. The present results should help elucidate the molecular underpinnings of the co-morbidity observed across COPD and CAD.


Assuntos
Aterosclerose/genética , Doença da Artéria Coronariana/genética , Loci Gênicos , Pulmão/fisiologia , Ventilação Pulmonar/genética , Espessura Intima-Media Carotídea , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Risco , Espirometria
20.
Mol Med ; 20: 456-65, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25032953

RESUMO

Atherosclerosis is an inflammatory disease and the main cause of cardiovascular disease. Inflammation promotes plaque instability and clinical disease, such as myocardial infarction, stroke and peripheral vascular disease. Subclinical atherosclerosis begins with thickening of the arterial intimal layer, and increased intima-media thickness (IMT) in the carotid artery is a widely used measurement of subclinical atherosclerosis. Activation of CD137 (tumor necrosis factor receptor super family 9) promotes inflammation and disease development in murine atherosclerosis. CD137 is expressed in human atherosclerosis, but its role is largely unknown. This study uses a genetic approach to investigate CD137 in human atherosclerotic disease. In publicly available data on genotype and gene expression from the HapMap project, the minor T allele of rs2453021, a single nucleotide polymorphism in CD137, was significantly associated with CD137 gene expression. In the PROCARDIS and Wellcome Trust Case Control Consortium (WTCCC) cohorts of 13,029 cases and controls, no significant association was detected between the minor T allele of rs2453021 and risk for coronary artery disease or myocardial infarction. However, in the IMPROVE multicenter study of 3,418 individuals, the minor T allele of rs2453021 was associated with increased IMT of the common carotid artery (CCA), as measured by ultrasonography, with presence of plaque in CCA and with increased incidence of adverse noncardiac vascular events. Taken together, this study shows that the minor T allele of rs2453021 is associated with increased IMT in the CCA and increased risk of incident noncardiac vascular events, thus providing the first human genetic evidence for involvement of CD137 in atherosclerosis.


Assuntos
Aterosclerose/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Idoso , Alelos , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Artéria Carótida Primitiva/diagnóstico por imagem , Artéria Carótida Primitiva/patologia , Espessura Intima-Media Carotídea , Linhagem Celular , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA