Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Artigo em Inglês | MEDLINE | ID: mdl-30130221


While many VA workflows make use of machine-learned models to support analytical tasks, VA workflows have become increasingly important in understanding and improving Machine Learning (ML) processes. In this paper, we propose an ontology (VIS4ML) for a subarea of VA, namely "VA-assisted ML". The purpose of VIS4ML is to describe and understand existing VA workflows used in ML as well as to detect gaps in ML processes and the potential of introducing advanced VA techniques to such processes. Ontologies have been widely used to map out the scope of a topic in biology, medicine, and many other disciplines. We adopt the scholarly methodologies for constructing VIS4ML, including the specification, conceptualization, formalization, implementation, and validation of ontologies. In particular, we reinterpret the traditional VA pipeline to encompass model-development workflows. We introduce necessary definitions, rules, syntaxes, and visual notations for formulating VIS4ML and make use of semantic web technologies for implementing it in the Web Ontology Language (OWL). VIS4ML captures the high-level knowledge about previous workflows where VA is used to assist in ML. It is consistent with the established VA concepts and will continue to evolve along with the future developments in VA and ML. While this ontology is an effort for building the theoretical foundation of VA, it can be used by practitioners in real-world applications to optimize model-development workflows by systematically examining the potential benefits that can be brought about by either machine or human capabilities. Meanwhile, VIS4ML is intended to be extensible and will continue to be updated to reflect future advancements in using VA for building high-quality data-analytical models or for building such models rapidly.

IEEE Trans Vis Comput Graph ; 24(1): 120-130, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866559


Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive cluster analysis techniques has been proposed to date, however, arriving at useful clusterings often requires several rounds of user interactions to fine-tune the data preprocessing and algorithms. We present a multi-stage Visual Analytics (VA) approach for iterative cluster refinement together with an implementation (SOMFlow) that uses Self-Organizing Maps (SOM) to analyze time series data. It supports exploration by offering the analyst a visual platform to analyze intermediate results, adapt the underlying computations, iteratively partition the data, and to reflect previous analytical activities. The history of previous decisions is explicitly visualized within a flow graph, allowing to compare earlier cluster refinements and to explore relations. We further leverage quality and interestingness measures to guide the analyst in the discovery of useful patterns, relations, and data partitions. We conducted two pair analytics experiments together with a subject matter expert in speech intonation research to demonstrate that the approach is effective for interactive data analysis, supporting enhanced understanding of clustering results as well as the interactive process itself.

IEEE Trans Vis Comput Graph ; 23(1): 241-250, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875141


Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have already demonstrated the benefits of tightly integrating DR with interactive visualizations. Nevertheless, a general, structured understanding of this integration is missing. To address this, we systematically studied the visual analytics and visualization literature to investigate how analysts interact with automatic DR techniques. The results reveal seven common interaction scenarios that are amenable to interactive control such as specifying algorithmic constraints, selecting relevant features, or choosing among several DR algorithms. We investigate specific implementations of visual analysis systems integrating DR, and analyze ways that other machine learning methods have been combined with DR. Summarizing the results in a "human in the loop" process model provides a general lens for the evaluation of visual interactive DR systems. We apply the proposed model to study and classify several systems previously described in the literature, and to derive future research opportunities.

IEEE Trans Vis Comput Graph ; 22(1): 240-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26529704


Visual analytics supports humans in generating knowledge from large and often complex datasets. Evidence is collected, collated and cross-linked with our existing knowledge. In the process, a myriad of analytical and visualisation techniques are employed to generate a visual representation of the data. These often introduce their own uncertainties, in addition to the ones inherent in the data, and these propagated and compounded uncertainties can result in impaired decision making. The user's confidence or trust in the results depends on the extent of user's awareness of the underlying uncertainties generated on the system side. This paper unpacks the uncertainties that propagate through visual analytics systems, illustrates how human's perceptual and cognitive biases influence the user's awareness of such uncertainties, and how this affects the user's trust building. The knowledge generation model for visual analytics is used to provide a terminology and framework to discuss the consequences of these aspects in knowledge construction and though examples, machine uncertainty is compared to human trust measures with provenance. Furthermore, guidelines for the design of uncertainty-aware systems are presented that can aid the user in better decision making.

Conscientização , Gráficos por Computador , Confiança/psicologia , Incerteza , Ergonomia , Humanos
IEEE Trans Vis Comput Graph ; 20(12): 1604-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26356874


Visual analytics enables us to analyze huge information spaces in order to support complex decision making and data exploration. Humans play a central role in generating knowledge from the snippets of evidence emerging from visual data analysis. Although prior research provides frameworks that generalize this process, their scope is often narrowly focused so they do not encompass different perspectives at different levels. This paper proposes a knowledge generation model for visual analytics that ties together these diverse frameworks, yet retains previously developed models (e.g., KDD process) to describe individual segments of the overall visual analytic processes. To test its utility, a real world visual analytics system is compared against the model, demonstrating that the knowledge generation process model provides a useful guideline when developing and evaluating such systems. The model is used to effectively compare different data analysis systems. Furthermore, the model provides a common language and description of visual analytic processes, which can be used for communication between researchers. At the end, our model reflects areas of research that future researchers can embark on.

Gráficos por Computador , Conhecimento , Modelos Teóricos , Interface Usuário-Computador , Tomada de Decisões , Humanos