Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Nat Commun ; 12(1): 1084, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597531

RESUMO

Children have mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) confirmed disease (COVID-19) compared to adults and the immunological mechanisms underlying this difference remain unclear. Here, we report acute and convalescent innate immune responses in 48 children and 70 adults infected with, or exposed to, SARS-CoV-2. We find clinically mild SARS-CoV-2 infection in children is characterised by reduced circulating subsets of monocytes (classical, intermediate, non-classical), dendritic cells and natural killer cells during the acute phase. In contrast, SARS-CoV-2-infected adults show reduced proportions of non-classical monocytes only. We also observe increased proportions of CD63+ activated neutrophils during the acute phase to SARS-CoV-2 in infected children. Children and adults exposed to SARS-CoV-2 but negative on PCR testing display increased proportions of low-density neutrophils that we observe up to 7 weeks post exposure. This study characterises the innate immune response during SARS-CoV-2 infection and household exposure in children.

2.
Sci Rep ; 11(1): 3619, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574360

RESUMO

Amino acid (AA) concentrations are influenced by both exogenous (e.g. diet, lifestyle) and endogenous factors (e.g. genetic, transcriptomic, epigenetic, and metabolomic). Fasting plasma AA profiles in adulthood are predictive of diabetes risk over periods of up to 12 years. Data on AA profiles in cross-generational cohorts, including individuals from shared gene-environment settings are scarce, but would allow the identification of the contribution of heritable and environmental factors characterising the levels of circulating AAs. This study aimed to investigate parent-child (familial dyad) concordance, absolute differences between generations- (children versus adults), age- (in adults: 28-71 years), and sex-dependent differences in plasma AA concentrations. Plasma AA concentrations were measured by UHPLC/MS-MS in 1166 children [mean (SD) age 11 (0.5) years, 51% female] and 1324 of their parents [44 (5.1) years, 87% female]. AA concentrations were variably concordant between parents and their children (5-41% of variability explained). Most AA concentrations were higher in adults than children, except for the non-essential AAs arginine, aspartic acid, glutamine, hydroxy-proline, proline, and serine. Male adults and children typically had higher AA concentrations than females. The exceptions were alanine, glutamine, glycine, hydroxy-proline, serine, and threonine in girls; and glycine and serine in women. Age, sex, and shared familial factors are important determinants of plasma AA concentrations.

3.
Clin Nutr ; 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610418

RESUMO

BACKGROUND & AIMS: To investigate the relationship between maternal serum fatty acid levels and gestational diabetes mellitus (GDM) subtypes across pregnancy. METHODS: A total of 680 singleton mothers enrolled in the Complex Lipids in Mothers and Babies (CLIMB) study in Chongqing, China were included. Clinical information and serum samples were collected at gestational weeks (GWs) 11-14, 22-28, and 32-34. 75 g Oral Glucose Tolerance Test (OGTT) was conducted at GW 24-28 and GDM subtypes divided into three groups using International Association of Diabetes and Pregnancy Study Group (IADPSG) guidelines criteria: elevated fasting plasma glucose (FPG group; n = 59); 1-h and/or 2-h post-load glucose (1h/2h-PG group; n = 94); combined group (FPG&1h/2h-PG group; n = 42). Non-GDM pregnancies were included (n = 485) as controls. Twenty fatty acids were quantified in serum using gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: Overall, most serum fatty acid concentrations increased rapidly from the first to second trimester, followed by a plateauing or reduction in the third trimester (p < 0.001). In cross sectional analysis, fatty acid concentrations were significantly higher in the FPG group at GW 11-14 and decreased in the 1h/2h-PG group at GW 32-34, relative to controls. Moreover, higher α-linolenic acid (ALA; the second tertile: adjusted odds ratio [aOR] = 2.53, 95% CI: 1.17 to 5.47; the third tertile: aOR = 2.60, 95% CI: 1.20 to 5.65) and docosahexaenoic acid (DHA; the second tertile: aOR = 2.34, 95% CI: 1.10 to 4.97; the third tertile: aOR = 2.16, 95% CI: 1.00 to 4.63) were significantly associated with a higher risk of GDM in women with elevated fasting plasma glucose at GW 11-14 (first tertile as reference). CONCLUSIONS: Our findings highlight the importance of considering GDM subtypes for the individualised management of GDM in pregnancy. ALA and DHA in early pregnancy are associated with a higher risk of FPG-GDM subtype. This has widespread implications when recommending n-3 PUFAs supplementation for women with GDM.

4.
Diabetes Res Clin Pract ; 171: 108623, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33316314

RESUMO

AIMS: To evaluate the influence of gestational diabetes mellitus (GDM) on the perinatal outcomes of twin pregnancies and its impact on fetal growth profiles of twin offspring from 6 weeks to 12 months of corrected age. METHODS: A longitudinal cohort study was conducted among pregnant women with twins and their twin offspring. All information on perinatal outcomes and child growth trajectories from 6 weeks to 12 months of corrected age were obtained and analyzed using a general linear model and logistic regression models. RESULTS: GDM was not correlated with adverse perinatal outcomes of twin pregnancies; however, in monochorionic diamniotic (MCDA), but not dichorionic diamniotic (DCDA) twin pregnancies, GDM was correlated with gestational hypertension disorder and a fetus being small for gestational age (OR, 2.68; 95% CI 1.16-6.04 and OR, 0.35; 95% CI 0.16-0.76, respectively). In both MCDA and DCDA groups, GDM was positively associated with a higher risk of childhood overweight at 6 months of corrected age (2.32 [1.05, 5.09] and 2.00 [1.13, 3.53]). CONCLUSIONS: GDM had a greater impact on MCDA twin pregnancies in terms of maternal gestational hypertension disease and small for gestational age of newborns. Additionally, twin offspring exposed to GDM had a higher risk of being overweight at 6 months of corrected age irrespective of chorionicity. CLINICAL TRIAL REGISTRATION: ChiCTR-OOC-16008203.

5.
Nutrients ; 12(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255249

RESUMO

A range of in utero and early-life factors can influence offspring epigenetics, particularly DNA methylation patterns. This study aimed to investigate the influence of a dietary intervention and factors in pregnancy on offspring epigenetic profile at five years of age. We also explored associations between body composition and methylation profile in a cross-sectional analysis. Sixty-three five-year-olds were selected from the ROLO Kids Study, a Randomized controlled trial Of a LOw glycemic index dietary intervention from the second trimester of pregnancy. DNA methylation was investigated in 780,501 CpG sites in DNA isolated from saliva. Principal component analysis identified no association between maternal age, weight, or body mass index (BMI) during pregnancy and offspring DNA methylation (p > 0.01). There was no association with the dietary intervention during pregnancy, however, gene pathway analysis identified functional clusters involved in insulin secretion and resistance that differed between the intervention and control. There were no associations with child weight or adiposity at five years of age; however, change in weight from six months was associated with variation in methylation. We identified no evidence of long-lasting influences of maternal diet or factors on DNA methylation at age five years. However, changes in child weight were associated with the methylome in childhood.

6.
Epigenomics ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300824

RESUMO

Aim: To investigate whether genes implicated in dementia pathogenesis are differently methylated in peripheral blood. Materials & methods: Participants included 160 cognitively healthy individuals aged 70+ years: 73 who were subsequently diagnosed with dementia and 87 controls matched on age, gender, education, smoking and baseline cognition. A total of 49 participants also provided blood samples at diagnosis. Blood DNA methylation of APOE, APP, BDNF, PIN1, SNCA and TOMM40 was examined. Results: A total of 56 of 299 probes were differentially methylated in dementia compared with controls and 39 probes prior to diagnosis. The greatest effect size was in APP (cg19423170, Δ-8.32%, adjusted p = 0.009 at diagnosis; cg19933173, Δ-4.18%, adjusted p < 0.0001 prediagnosis). Conclusion: Genes implicated in dementia pathogenesis show differential blood methylation in dementia, even prior to diagnosis.

8.
Nat Commun ; 11(1): 5703, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177504

RESUMO

Compared to adults, children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have predominantly mild or asymptomatic infections, but the underlying immunological differences remain unclear. Here, we describe clinical features, virology, longitudinal cellular, and cytokine immune profile, SARS-CoV-2-specific serology and salivary antibody responses in a family of two parents with PCR-confirmed symptomatic SARS-CoV-2 infection and their three children, who tested repeatedly SARS-CoV-2 PCR negative. Cellular immune profiles and cytokine responses of all children are similar to their parents at all timepoints. All family members have salivary anti-SARS-CoV-2 antibodies detected, predominantly IgA, that coincide with symptom resolution in 3 of 4 symptomatic members. Plasma from both parents and one child have IgG antibody against the S1 protein and virus-neutralizing activity detected. Using a systems serology approach, we demonstrate higher levels of SARS-CoV-2-specific antibody features of these family members compared to healthy controls. These data indicate that children can mount an immune response to SARS-CoV-2 without virological confirmation of infection, raising the possibility that immunity in children can prevent the establishment of SARS-CoV-2 infection. Relying on routine virological and serological testing may not identify exposed children, with implications for epidemiological and clinical studies across the life-span.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Infecções por Coronavirus/transmissão , Citocinas/sangue , Pneumonia Viral/transmissão , Saliva/imunologia , Adulto , Anticorpos Antivirais/imunologia , Austrália , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Criança , Pré-Escolar , Infecções por Coronavirus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Pandemias , Pais , Pneumonia Viral/imunologia , Testes Sorológicos , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-33146725

RESUMO

BACKGROUND: We investigated a cross-sectional epigenome-wide association study of patients with early and late diabetes-associated chronic kidney disease (CKD) to identify possible epigenetic differences between the two groups as well as changes in methylation across all stages of diabetic CKD. We also evaluated the potential of using a panel of identified 5'-C-phosphate-G-3' (CpG) sites from this cohort to predict the progression of diabetic CKD. METHODS: This cross-sectional study recruited 119 adults. DNA was extracted from blood using the Qiagen QIAampDNA Mini Spin Kit. Genome-wide methylation analysis was performed using Illumina Infinium MethylationEPIC BeadChips (HM850K). Intensity data files were processed and analysed using the minfi and MissMethyl packages for R. We examined the degree of methylation of CpG sites in early versus late diabetic CKD patients for CpG sites with an unadjusted P-value <0.01 and an absolute change in methylation of 5% (n = 239 CpG sites). RESULTS: Hierarchical clustering of the 239 CpG sites largely separated the two groups. A heat map for all 239 CpG sites demonstrated distinct methylation patterns in the early versus late groups, with CpG sites showing evidence of progressive change. Based on our differentially methylated region (DMR) analysis of the 239 CpG sites, we highlighted two DMRs, namely the cysteine-rich secretory protein 2 (CRISP2) and piwi-like RNA-mediated gene silencing 1 (PIWIL1) genes. The best predictability for the two groups involved a receiver operating characteristics curve of eight CpG sites alone and achieved an area under the curve of 0.976. CONCLUSIONS: We have identified distinct DNA methylation patterns between early and late diabetic CKD patients as well as demonstrated novel findings of potential progressive methylation changes across all stages (1-5) of diabetic CKD at specific CpG sites. We have also identified associated genes CRISP2 and PIWIL1, which may have the potential to act as stage-specific diabetes-associated CKD markers, and showed that the use of a panel of eight identified CpG sites alone helps to increase the predictability for the two groups.

10.
Front Immunol ; 11: 567981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072108

RESUMO

Several recent studies have reported a key role for innate cell hyper-responsiveness in food allergy. This has predominantly been observed in early life, with evidence that innate immune function may return to baseline if food allergy resolves in later childhood. Hallmarks of hyper-responsiveness include increased circulating frequency of monocytes and altered innate cell cytokine responses to in vitro exposure with bacterial endotoxin. These features mirror the defining signatures of trained innate immunity, seen in other complex diseases. In this study, detailed immune cell and cytokine profiling was performed on peripheral blood mononuclear cells at baseline from 27 1 year old infants in the HealthNuts cohort (n = 16 egg allergic and n = 11 non-allergic healthy controls) and following monocyte stimulation. We show that egg allergic infants have increased frequency of circulating monocytes, reduced numbers of regulatory CD4 T cells and increased monocyte: CD4 T cell ratios relative to healthy controls. Monocytes from both egg allergic and non-allergic infants responded to endotoxin stimulation with rapid cytokine production and downregulation of the surface receptor CD16, however monocytes from egg allergic infants were hyper-responsive, producing significantly more inflammatory cytokines (TNFα, IL-6, IL-1ß, IL-8) and innate cell recruiting factors (MIP-1α) than healthy controls. This work indicates that monocytes of food allergic infants are programmed to a hyper-inflammatory phenotype and that the development of food allergy may be associated with trained immunity in early life.

11.
Clin Epigenetics ; 12(1): 158, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092643

RESUMO

BACKGROUND: DNA methylation-based biological age (DNAm age) is an important biomarker for adult health. Studies in specific age ranges have found widely varying results about its genetic and environmental causes of variation. However, these studies are not able to provide a comprehensive view of the causes of variation over the lifespan. RESULTS: In order to investigate the genetic and environmental causes of DNAm age variation across the lifespan, we pooled genome-wide DNA methylation data for 4217 people aged 0-92 years from 1871 families. DNAm age was calculated using the Horvath epigenetic clock. We estimated familial correlations in DNAm age for monozygotic (MZ) twin, dizygotic (DZ) twin, sibling, parent-offspring, and spouse pairs by cohabitation status. Genetic and environmental variance components models were fitted and compared. We found that twin pair correlations were - 0.12 to 0.18 around birth, not different from zero (all P > 0.29). For all pairs of relatives, their correlations increased with time spent living together (all P < 0.02) at different rates (MZ > DZ and siblings > parent-offspring; P < 0.001) and decreased with time spent living apart (P = 0.02) at similar rates. These correlation patterns were best explained by cohabitation-dependent shared environmental factors, the effects of which were 1.41 (95% confidence interval [CI] 1.16 to 1.66) times greater for MZ pairs than for DZ and sibling pairs, and the latter were 2.03 (95% CI 1.13 to 9.47) times greater than for parent-offspring pairs. Genetic factors explained 13% (95% CI - 10 to 35%) of variation (P = 0.27). Similar results were found for another two epigenetic clocks, suggesting that our observations are robust to how DNAm age is measured. In addition, results for the other clocks were consistent with there also being a role for prenatal environmental factors in determining their variation. CONCLUSIONS: Variation in DNAm age is mostly caused by environmental factors, including those shared to different extents by relatives while living together and whose effects persist into old age. The equal environment assumption of the classic twin study might not hold for epigenetic aging.

12.
Placenta ; 100: 89-95, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891006

RESUMO

INTRODUCTION: The leptin signalling pathway is important in metabolic health during pregnancy. However, few studies have investigated the determinants and extent of leptin receptor gene (LEPR) expression in the placenta, nor the relationship with infant health in early life. Here, we investigate the genetic and maternal in utero determinants of placental LEPR expression, and whether this expression is linked to anthropometric and inflammatory measures at birth in healthy newborns in the Barwon Infant Study. METHODS: Placental LEPR expression was measured using RT-qPCR (n = 854 placentae). Associations between genetic variation in LEPR, maternal in utero factors, measures at birth and placental LEPR expression were assessed using multivariable linear regression modelling. RESULTS: We found that the genotype at two intronic SNPs, rs9436301 and rs9436746, was independently associated with placental LEPR expression. Maternal pre-pregnancy body mass index, gestational diabetes mellitus, weight gain and smoking in pregnancy were not associated with LEPR expression. Placental LEPR expression was negatively associated with high sensitivity C-Reactive Protein in umbilical cord blood, which persisted after adjustment for potential confounders. DISCUSSION: Overall, our findings suggest that genetic variation in LEPR plays a key role in regulating placental LEPR expression, which is in turn is associated with inflammatory markers in cord blood at birth. Further studies encompassing other aspects of leptin signalling are warranted to understand if these relationships are causal and have health implications.

14.
Biomedicines ; 8(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927866

RESUMO

Diabetes-associated chronic kidney disease is a pandemic issue. Despite the global increase in the number of individuals with this chronic condition together with increasing morbidity and mortality, there are currently only limited therapeutic options to slow disease progression. One of the reasons for this is that the current-day "gold standard" biomarkers lack adequate sensitivity and specificity to detect early diabetic chronic kidney disease (CKD). This review focuses on the rapidly evolving areas of epigenetics, metabolomics, and the gut microbiome as potential sources of novel biomarkers in diabetes-associated CKD and discusses their relevance to clinical practice. However, it also highlights the problems associated with many studies within these three areas-namely, the lack of adequately powered longitudinal studies, and the lack of reproducibility of results which impede biomarker development and clinical validation in this complex and susceptible population.

15.
BMC Med Res Methodol ; 20(1): 238, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972373

RESUMO

BACKGROUND: Very large cohorts that span an entire population raise new prospects for the conduct of multiple trials that speed up advances in prevention or treatment while reducing participant, financial and regulatory burden. However, a review of literature reveals no blueprint to guide this systematically in practice. This Statement of Intent proposes how diverse trials may be integrated within or alongside Generation Victoria (GenV), a whole-of-state Australian birth cohort in planning, and delineates potential processes and opportunities. METHODS: Parents of all newborns (estimated 160,000) in the state of Victoria, Australia, will be approached for two full years from 2021. The cohort design comprises four elements: (1) consent soon after birth to follow the child and parent/s until study end or withdrawal; retrospective and prospective (2) linkage to clinical and administrative datasets and (3) banking of universal and clinical biosamples; and (4) GenV-collected biosamples and data. GenV-collected data will focus on overarching outcome and phenotypic measures using low-burden, universal-capable electronic interfaces, with funding-dependent face-to-face assessments tailored to universal settings during the early childhood, school and/or adult years. RESULTS: For population or registry-type trials within GenV, GenV will provide all outcomes data and consent via traditional, waiver, or Trials Within Cohorts models. Trials alongside GenV consent their own participants born within the GenV window; GenV may help identify potential participants via opt-in or opt-out expression of interest. Data sharing enriches trials with outcomes, prior data, and/or access to linked data contingent on custodian's agreements, and supports modeling of causal effects to the population and between-trials comparisons of costs, benefits and utility. Data access will operate under the Findability, Accessibility, Interoperability, and Reusability (FAIR) and Care and Five Safes Principles. We consider governance, ethical and shared trial oversight, and expectations that trials will adhere to the best practice of the day. CONCLUSIONS: Children and younger adults can access fewer trials than older adults. Integrating trials into mega-cohorts should improve health and well-being by generating faster, larger-scale evidence on a longer and/or broader horizon than previously possible. GenV will explore the limits and details of this approach over the coming years.

16.
JMIR Res Protoc ; 9(7): e16277, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32734931

RESUMO

BACKGROUND: The importance of identifying people with diabetes and progressive kidney dysfunction relates to the excess morbidity and mortality of this group. Rates of cardiovascular disease are much higher in people with both diabetes and kidney dysfunction than in those with only one of these conditions. By the time these people are identified in current clinical practice, proteinuria and renal dysfunction are already established, limiting the effectiveness of therapeutic interventions. The identification of an epigenetic or blood metabolite signature or gut microbiome profile may identify those with diabetes at risk of progressive chronic kidney disease, in turn providing targeted intervention to improve patient outcomes. OBJECTIVE: This study aims to identify potential biomarkers in people with diabetes and chronic kidney disease (CKD) associated with progressive renal injury and to distinguish between stages of chronic kidney disease. Three sources of biomarkers will be explored, including DNA methylation profiles in blood lymphocytes, the metabolomic profile of blood-derived plasma and urine, and the gut microbiome. METHODS: The cross-sectional study recruited 121 people with diabetes and varying stages (stages 1-5) of chronic kidney disease. Single-point data collection included blood, urine, and fecal samples in addition to clinical data such as anthropometric measurements and biochemical parameters. Additional information obtained from medical records included patient demographics, medical comorbidities, and medications. RESULTS: Data collection commenced in January 2018 and was completed in June 2018. At the time of submission, 121 patients had been recruited, and 119 samples remained after quality control. There were 83 participants in the early diabetes-associated CKD group with a mean estimated glomerular filtration rate (eGFR) of 61.2 mL/min/1.73 m2 (early CKD group consisting of stage 1, 2, and 3a CKD), and 36 participants in the late diabetic CKD group with a mean eGFR of 23.9 mL/min/1.73 m2 (late CKD group, consisting of stage 3b, 4, and 5), P<.001. We have successfully obtained DNA for methylation and microbiome analyses using the biospecimens collected via this protocol and are currently analyzing these results together with the metabolome of this cohort of individuals with diabetic CKD. CONCLUSIONS: Recent advances have improved our understanding of the epigenome, metabolomics, and the influence of the gut microbiome on the incidence of diseases such as cancers, particularly those related to environmental exposures. However, there is a paucity of literature surrounding these influencers in renal disease. This study will provide insight into the fundamental understanding of the pathophysiology of CKD in individuals with diabetes, especially in novel areas such as epigenetics, metabolomics, and the kidney-gut axis. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/16277.

18.
Placenta ; 97: 68-70, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32792067

RESUMO

Fetal sex influences placental function as well as maternal and fetal health, being an important factor to consider in pregnancy studies. However, fetal sex determination in the first trimester of pregnancy still faces some technical limitations. Here we describe an RT-qPCR technique to determine fetal sex based on X-inactive specific transcript (XIST) and DEAD-Box helicase 3 Y-linked (DDX3Y) gene expression. This method is straightforward, reliable, fast and applicable on both, placental tissue and primary cells.

19.
J Matern Fetal Neonatal Med ; : 1-8, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32722949

RESUMO

OBJECTIVES: This study aimed to identify which element of body composition measurements taken before 17th week gestation was the strongest risk factor for gestational diabetes mellitus (GDM) in Chinese pregnant women. DESIGN AND SETTING: A retrospective study was performed using data retrieved from the Electronic Medical Record database of Chongqing Health Center for Women and Children (China) from January 2014 to December 2015. PARTICIPANTS: A total of 22,223 women were included with singleton pregnancies and no preexisting diabetes who underwent bioelectrical impedance analysis (BIA) before 17 gestational weeks and 75-g OGTT at 24-28 gestational weeks. RESULTS: The prevalence of GDM from 2014 to 2015 was 27.13% (IADPSG). All indicators of BIA (total body water, fat mass, fat-free mass, percent body fat, muscle mass, visceral fat levels, proteins, bone minerals, basal metabolic rate, lean trunk mass), age, weight and body mass index (BMI) were risk factors that significantly increased the occurrence of GDM (p < .001 for all). Women older than 30 years or with a BMI more than 23, had a significantly higher GDM prevalence (34.89% and 34.77%). After adjusted covariates, visceral fat levels at the third quartile, the ORs of GDM were 1.142 (95% CI 1.032-1.263) in model I and 1.419 (95% CI 1.274-1.581) in model II used the first quartile as reference (p < .05 for both); bone minerals at the third quartile, the ORs of GDM were 1.124 (95% CI 1.020-1.238) in model I and 1.311 (95% CI 1.192-1.442) in model II (p < .05 for both). After adjusted for age, visceral fat levels and bone minerals, OR of GDM for percent body fat more than 28.77% at the third quartile was 1.334 (95% CI 1.201-1.482) in model II (p < .05 for both). CONCLUSIONS: Visceral fat levels, bone minerals and percent body fat were significantly associated with an increased risk of GDM, providing the reference ranges of visceral fat levels, bone minerals and percent body fat as predictive factors for Chinese women to estimate the risk of GDM by BIA during pregnancy.

20.
Pediatrics ; 146(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632021

RESUMO

OBJECTIVES: To examine how overweight and obesity at specific ages and overall BMI growth patterns throughout childhood predict cardiometabolic phenotypes at 11 to 12 years. METHODS: In a population-based sample of 5107 infants, BMI was measured every 2 years between ages 2 to 3 and 10 to 11 years. We identified 5 BMI trajectories using growth curve models. At ages 11 to 12 years, 1811 children completed assessments for metabolic syndrome risk scores, carotid-femoral pulse wave velocity, and carotid intima-media thickness. Multivariable regression models were used to estimate associations, adjusted for potential confounders (eg, age, sex, smoking exposure, and small for gestational age). RESULTS: Overweight and obesity from early childhood onward were strongly associated with higher cardiometabolic risk at 11 to 12 years of age. At age 6 to 7 years, compared with those with a healthy weight, children with overweight had higher metabolic syndrome risk scores by 0.23 SD units (95% confidence interval 0.05 to 0.41) and with obesity by 0.76 SD units (0.51-1.01), with associations almost doubling by age 10 to 11 years. Obese (but not overweight) children had higher outcome pulse wave velocity (0.64-0.73 SD units) from ages 6 to 7 years and slightly higher outcome carotid intima-media thickness (0.20-0.30 SD units) at all ages. Cumulative exposure to high BMI from 2 to 3 years of age carried the greatest cardiometabolic risk, with a gradient of risk across trajectories. CONCLUSIONS: High early-childhood BMI is already silently associated with the development of cardiometabolic risk by 11 to 12 years, highlighting the urgent need for effective action to reduce overweight and obesity in early childhood.


Assuntos
Índice de Massa Corporal , Diagnóstico Precoce , Programas de Rastreamento , Obesidade Pediátrica/epidemiologia , Austrália/epidemiologia , Espessura Intima-Media Carotídea , Criança , Pré-Escolar , Fatores de Confusão Epidemiológicos , Metabolismo Energético , Feminino , Seguimentos , Transtornos do Crescimento/epidemiologia , Humanos , Lactente , Recém-Nascido Pequeno para a Idade Gestacional , Masculino , Síndrome Metabólica/epidemiologia , Sobrepeso/epidemiologia , Pandemias , Fenótipo , Análise de Onda de Pulso , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA