Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Cell Mol Med ; 23(10): 6885-6896, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31389667

RESUMO

Aberrant expression of Sialyl-Tn (STn) antigen correlates with poor prognosis and reduced patient survival. We demonstrated that expression of Tn and STn in pancreatic ductal adenocarcinoma (PDAC) is due to hypermethylation of Core 1 synthase specific molecular chaperone (COSMC) and enhanced the malignant properties of PDAC cells with an unknown mechanism. To explore the mechanism, we have genetically deleted COSMC in PDAC cells to express truncated O-glycans (SimpleCells, SC) which enhanced cell migration and invasion. Since epithelial-to-mesenchymal transition (EMT) play a vital role in metastasis, we have analysed the induction of EMT in SC cells. Expressions of the mesenchymal markers were significantly high in SC cells as compared to WT cells. Equally, we found reduced expressions of the epithelial markers in SC cells. Re-expression of COSMC in SC cells reversed the induction of EMT. In addition to this, we also observed an increased cancer stem cell population in SC cells. Furthermore, orthotopic implantation of T3M4 SC cells into athymic nude mice resulted in significantly larger tumours and reduced animal survival. Altogether, these results suggest that aberrant expression of truncated O-glycans in PDAC cells enhances the tumour aggressiveness through the induction of EMT and stemness properties.

2.
FEBS Lett ; 593(19): 2751-2761, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31283009

RESUMO

Aberrant expression of the glycoprotein mucin-1 (MUC1) has been associated with pancreatic cancer progression and metastasis as a result of mediating the oncogenic transcriptional regulation of target genes. In the present study, we demonstrate that MUC1 downregulates the expression of the tumor suppressor polypeptide N-acetylgalactosaminyltransferase 5 in pancreatic cancer. ChIP-on-chip analysis revealed that the MUC1 cytoplasmic tail binds to regulatory elements in the GALNT5 gene. Additionally, MUC1 increases binding of p53 and c-Jun and decreases the binding of Sp1 to the proximal promoter and exonic regions of GALNT5. We also observed that expression of N-acetylgalactosaminyltransferase 5 is inversionally proportional to MUC1 expression in human pancreatic cancer. These results demonstrate that MUC1 downregulates the expression of N-acetylgalactosaminyltransferase 5 in pancreatic cancer by modifying the promoter occupancy of transcription factors through its cytoplasmic domain.

3.
J Pharmacol Exp Ther ; 370(3): 894-901, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30683666

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. A combination of cisplatin (CDDP) and gemcitabine (Gem) treatment has shown favorable clinical results for metastatic disease; both are limited by toxicities and nontargeted delivery. More than 80% of PDAC aberrantly expresses the sialyl Tn (STn) antigen due to the loss of function of the core 1ß3-Gal-T-specific molecular chaperone, a specific chaperone for the activity of core 1 ß3-galactosyltransferase or C1GalT. Here, we report the development of polymeric nanogels (NGs) loaded with CDDP and coated with an anti-STn antigen-specific antibody (TKH2 monoclonal antibody) for the targeted treatment of PDAC. TKH2-functionalized, CDDP-loaded NGs delivered a significantly higher amount of platinum into the cells and tumors expressing STn antigens. We also confirmed that a synergistic cytotoxic effect of sequential exposure of pancreatic cancer cells to Gem followed by CDDP can be mimicked by the codelivery of CDDP-loaded NGs (NG/CDDP) and free Gem. In a murine orthotopic model of PDAC, combined simultaneous treatment with Gem and targeted NG/CDDP significantly attenuated tumor growth with no detectable acute toxicity. Altogether, these results suggest that combination therapy consisting of Gem followed by TKH2-conjugated CDDP NGs induces highly synergistic therapeutic efficacy against pancreatic cancer. Our results offer the basis for development of combination drug regimens using targeted nanomedicines to increase treatment effectiveness and improve outcomes of PDAC therapy.

4.
Int J Biochem Cell Biol ; 83: 1-14, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27939754

RESUMO

Generation of nitric oxide (NO) in cellular compartments acts in a redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging superoxide anions (O2-), to form peroxynitrite (ONOO-) or acting as a signaling molecule, altering gene expression that triggers various physiological processes. However, the molecular mechanisms of macrophage activation and NO production leads to apoptosis and inflammation after 2-chloroethyl ethyl sulphide (CEES) exposure remains unclear. We showed that CEES exposure in macrophages increased the O2- production. Also CEES exposure transiently increases the NO production and ONOO- accumulation via expression of inducible NO synthase (iNOS). Simultaneously, CEES exposure caused a significant reduction in cellular antioxidants and modulate lipid peroxidation (LPO), and protein carbonylation (PC) reactions, which was correlated with the increased level of NO and ONOO- accumulation. Mechanistic studies showed the DNA damage, 8-oxoGDNA glycosylase (OGG1) down regulation and 8-hydroxydeoxyguanosine (8-OHdG) accumulations in DNA, which was also confirmed by phosphorylation of ATM, ATR and H2A.X. Elevated levels of NO/ONOO- plays an important role in apoptosis, and alteration of cell cycle regulatory proteins in macrophages after CEES exposure. Moreover, CEES exposure to macrophage cells enhanced the transcriptional activities of inflammatory mediators such as TNFα, IL-1α, ICAM, CX3CL1, CCL8, and CXCL10, which were linked with NO/ONOO- accumulation. These results showed a mechanistic explanation of how NO/ONOO- cooperate to conduct apoptosis and inflammatory signals in macrophages after CEES challenged. Further, the protective effects of NO/ONOO- inhibitors may provide the basis for the development of a therapeutic strategy to counteract exposure to CEES.


Assuntos
Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Gás de Mostarda/análogos & derivados , Óxido Nítrico/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Pelados , Gás de Mostarda/toxicidade , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ácido Peroxinitroso/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Contemp Clin Dent ; 5(4): 561-3, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25395781

RESUMO

Neural tumors located centrally in jaw bones are relatively rare compared with soft tissue neurofibromas. Less than 50 cases have been reported in the literature with a predilection for mandible. This article aims to elucidate a unique case of intraosseous neurofibroma of mandible in a 62-year-old edentulous female patient associated with facial asymmetry due to the swelling extending from the right body of mandible to left body of mandible. The uniqueness of this case is related to the age and extensiveness of this lesion. A review of clinical, radiographic, histological, and immunohistochemical features, and the surgical management pertaining to this case are discussed along with a review of the literature.

6.
J Hazard Mater ; 278: 236-49, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24976129

RESUMO

2-chloroethyl ethyl sulphide (CEES), a monofunctional analogue of sulfur mustard, is a strong vesicant and an alkylating chemical warfare agent. We studied the molecular mechanism of oxidative stress triggered signaling cascades in murine macrophages exposed to CEES with lipopolysaccharide (LPS). Exposure of CEES with specific dose of LPS stimulates oxidative stress caused increasing level of intracellular ROS and RNS, decreased antioxidant enzymes, increasing bimolecular damage, reduced cell viability, and cell cycle arrest. Synergistic exposure of CEES and LPS provoked significant increase in phosphorylation of MAPKs, Akt, tuberin, that down regulate OGG1 expression and 8-OHdG accumulations. Treatment with Akt and ERK1/2 inhibitors, the cells with constitutively active inhibiting activity of Akt and ERK1/2MAPK significant reduce CEES and LPS challenge tuberin but not the OGG1. In addition, the N-acetylcysteine inhibited ROS/RNS generation, elevation of antioxidants level, expression of ERK1/2, Akt, tuberin phosphorylation, resulted in deceased 8-OHdG accumulation and upregulation of OGG1 protein expression suggesting no involvement of Akt and ERK1/2MAPK pathways after CEES and LPS challenge. Collectively, our results indicate that exposure of CEES and LPS induces oxidative stress and the activation of tuberin, and 8-OHdG accumulation via upstream signaling pathways including Akt and ERK1/2MAPK pathway in macrophages but not the down regulation of OGG1.


Assuntos
Substâncias para a Guerra Química/toxicidade , DNA Glicosilases/metabolismo , Lipopolissacarídeos/toxicidade , Gás de Mostarda/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Gás de Mostarda/toxicidade , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa
7.
Ann Plast Surg ; 72(1): 100-3, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23314188

RESUMO

OBJECTIVE: Perhaps the most vexing and exigent problem confronting head and neck cancer reconstruction is overcoming the impediments of collateral damage imposed by radiation therapy (XRT) on normal surrounding tissue. Radiation therapy is detrimental to bone and soft tissue repair resulting in an unacceptably high incidence of devastating wound healing complications as well as the associated morbidity of late pathologic fractures, reduced bone healing, and osteoradionecrosis. The consequences of XRT on bone vasculature, long known to be affected by radiation, have been poorly understood. The purpose of this study was to analyze the degree by which irradiation degrades existing bone vascularity using a powerful micro-computed tomography technique to attain highly precise quantitative metrics of the vascular tree. METHODS: Fourteen 400-g male Sprague-Dawley rats underwent 35 Gy of fractionated XRT at 7 Gy/d. The animals were euthanized after 28 days, and the left ventricle was fixed and injected with Microfil (MV-122; Flow Tech, Carver, Mass) contrast. Left hemimandibles were dissected and scanned using high-resolution micro-computed tomography (18-µm voxels). The vessel number, thickness, separation, connectivity, and vessel volume fraction were analyzed for the region of interest, defined to be the volume behind the third molar spanning a total distance of 5.1 mm. RESULTS: Stereologic analysis and subsequent analysis of variance test demonstrated a significant and quantifiable diminution in the irradiated vasculature when compared with control animals. The vessel volume fraction (0.016 vs 0.032, P ≤ 0.003) and vessel thickness (0.042 vs 0.067 mm, P ≤ 0.001) were markedly reduced. Interestingly, further analysis demonstrated no significant differences between vessel separation and vessel number. CONCLUSIONS: The results of our study specifically quantify the corrosive affects of XRT on the vasculature of the mandible. The data from this novel technique go even further and imply retention of blood vessels but a degradation of their quality and size. Further experiments can now be directed at therapeutic interventions to reverse this process and better understand the underlying mechanism of XRT-induced bone injury.


Assuntos
Mandíbula/irrigação sanguínea , Microvasos/efeitos da radiação , Microtomografia por Raio-X , Animais , Fracionamento da Dose de Radiação , Masculino , Mandíbula/diagnóstico por imagem , Mandíbula/efeitos da radiação , Microvasos/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA