Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Nano ; 16(1): 783-791, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34931805


Thinning crystalline materials to two dimensions (2D) creates a rich playground for electronic phases, including charge, spin, superconducting, and topological order. Bulk materials hosting charge density waves (CDWs), when reduced to ultrathin films, have shown CDW enhancement and tunability. However, charge order confined to only 2D remains elusive. Here we report a distinct charge ordered state emerging in the monolayer limit of 1T-VSe2. Systematic scanning tunneling microscopy experiments reveal that bilayer VSe2 largely retains the bulk electronic structure, hosting a tridirectional CDW. However, monolayer VSe2 ─consistently across distinct substrates─exhibits a dimensional crossover, hosting two CDWs with distinct wavelengths and transition temperatures. Electronic structure calculations reveal that while one CDW is bulk-like and arises from the well-known Peierls mechanism, the other is decidedly unconventional. The observed CDW-lattice decoupling and the emergence of a flat band suggest that the second CDW could arise from enhanced electron-electron interactions in the 2D limit. These findings establish monolayer-VSe2 as a host of coexisting charge orders with distinct origins, and enable the tailoring of electronic phenomena via emergent interactions in 2D materials.

J Phys Condens Matter ; 32(8): 085601, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31689696


We have investigated the superconducting state of HfIrSi using magnetization, specific heat, muon spin rotation and relaxation ([Formula: see text]SR) measurements. Superconductivity was observed at [Formula: see text] K in both specific heat and magnetization measurements. From an analysis of the transverse-field [Formula: see text]SR data, it is clear that the temperature variation of superfluid density is well fitted by an isotropic Bardeen-Cooper-Schrieffer (BCS) type s-wave gap structure. The superconducting carrier density [Formula: see text] m-3, the magnetic penetration depth, [Formula: see text] nm, and the effective mass, [Formula: see text], were calculated from the TF-[Formula: see text]SR data. Zero-field [Formula: see text]SR data for HfIrSi reveal the absence of any spontaneous magnetic moments below [Formula: see text], indicating that time-reversal symmetry (TRS) is preserved in the superconducting state of HfIrSi. Theoretical investigations suggest that the Hf and Ir atoms hybridize strongly along the c-axis, and that this is responsible for the strong three-dimensionality of this system which screens the Coulomb interaction. As a result, despite the presence of d-electrons in HfIrSi, these correlation effects are weakened, making the electron-phonon coupling more important.

Phys Rev Lett ; 122(14): 147001, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050469


The newly discovered noncentrosymmetric superconductor ThCoC_{2} exhibits numerous types of unconventional behavior in the field dependent heat capacity data. Here we present the first measurement of the gap symmetry of ThCoC_{2} by muon spin rotation and relaxation (µSR) measurements. The temperature dependence of the magnetic penetration depth measured using the transverse field µSR experiment reveals the evidence of a nodal pairing symmetry. To understand this finding, we carry out calculations of the superconducting pairing eigenvalue and eigenfunction (pairing symmetry) due to the spin-fluctuation mechanism by directly implementing the ab initio band structures. We find that the system possesses a single Fermi surface with considerable three dimensionality and a strong nesting along the k_{z} direction. Such nesting promotes a superconducting state with a cosk_{z}-like pairing symmetry with a prominent nodal line on the k_{z}=±π/2 plane. The result agrees well with the experimental data.