Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 3): 749-754, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511007

RESUMO

Modern inelastic X-ray spectrometers employ curved, bent and diced analyzers to capture sufficiently large solid angles of radially emitted scattered radiation emanating from the sample. Fabricating these intricate analyzers, especially when a high energy resolution of a few millielectronvolts is required, is very time-consuming, expensive and often a hit-or-miss affair. A novel fabrication technique is introduced, utilizing a concave-spherical, microporous aluminium base to hold an assembly of a thin glass substrate with a diced crystal wafer bonded to it. Under uniform vacuum forces, the glass substrate is drawn into the aluminium base, achieving the desired bending radius, while dicing of the diffracting crystal layer prevents bending strain from being imposed on the individual crystal pixels. This technique eliminates the need for permanently bonding the crystal assembly to the concave lens, offering the opportunity for correcting figure errors, avoiding long-term degradation of the permanent bond, and making both lens and crystal reusable. Process and material costs are thus substantially decreased. Two analyzers, Si(844) and Ge(337) with intrinsic resolutions of 14.6 meV and 36.5 meV, respectively, were produced in this fashion and characterized in resonant inelastic X-ray scattering (RIXS) measurements. The achieved overall energy resolutions for both analyzers were 29.4 meV for Si(844) and 56.6 meV for Ge(337). Although the RIXS technique is veru sensitive to analyzer imperfections, the analyzers were found to be equal, if not superior, in quality to their traditional, permanently bonded counterparts.

2.
J Synchrotron Radiat ; 28(Pt 4): 1184-1192, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212883

RESUMO

The IRIXS Spectrograph represents a new design of an ultra-high-resolution resonant inelastic X-ray scattering (RIXS) spectrometer that operates at the Ru L3-edge (2840 eV). First proposed in the field of hard X-rays by Shvyd'ko [(2015), Phys. Rev. A, 91, 053817], the X-ray spectrograph uses a combination of laterally graded multilayer mirrors and collimating/dispersing Ge(111) crystals optics in a novel spectral imaging approach to overcome the energy resolution limitation of a traditional Rowland-type spectrometer [Gretarsson et al. (2020), J. Synchrotron Rad. 27, 538-544]. In combination with a dispersionless nested four-bounce high-resolution monochromator design that utilizes Si(111) and Al2O3(110) crystals, an overall energy resolution better than 35 meV full width at half-maximum has been achieved at the Ru L3-edge, in excellent agreement with ray-tracing simulations.

3.
Sci Adv ; 7(21)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34020958

RESUMO

The candidate thermoelectric compounds Mg3Sb2 and Mg3Bi2 show excellent performance near ambient temperature, enabled by an anomalously low lattice thermal conductivity (κl) comparable to those of much heavier PbTe or Bi2Te3 Contrary to common mass-trend expectations, replacing Mg with heavier Ca or Yb yields a threefold increase in κl in CaMg2Sb2 and YbMg2Bi2 Here, we report a comprehensive analysis of phonons in the series AMg2 X 2 (A = Mg, Ca, and Yb; X = Bi and Sb) based on inelastic neutron/x-ray scattering and first-principles simulations and show that the anomalously low κl of Mg3 X 2 has inherent phononic origins. We uncover a large phonon softening and flattening of low-energy transverse acoustic phonons in Mg3 X 2 compared to the ternary analogs and traced to a specific Mg-X bond, which markedly enlarges the scattering phase-space, enabling the threefold tuning in κl These results provide key insights for manipulating phonon scattering without the traditional reliance on heavy elements.

4.
Phys Rev Lett ; 126(10): 107001, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784111

RESUMO

Interactions between nematic fluctuations, magnetic order and superconductivity are central to the physics of iron-based superconductors. Here we report on in-plane transverse acoustic phonons in hole-doped Sr_{1-x}Na_{x}Fe_{2}As_{2} measured via inelastic x-ray scattering, and extract both the nematic susceptibility and the nematic correlation length. By a self-contained method of analysis, for the underdoped (x=0.36) sample, which harbors a magnetically ordered tetragonal phase, we find it hosts a short nematic correlation length ξ∼10 Å and a large nematic susceptibility χ_{nem}. The optimal-doped (x=0.55) sample exhibits weaker phonon softening effects, indicative of both reduced ξ and χ_{nem}. Our results suggest short-range nematic fluctuations may favor superconductivity, placing emphasis on the nematic correlation length for understanding the iron-based superconductors.

5.
Adv Sci (Weinh) ; 7(11): 1902071, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537392

RESUMO

Charge and thermal transport in a crystal is carried by free electrons and phonons (quantized lattice vibration), the two most fundamental quasiparticles. Above the Debye temperature of the crystal, phonon-mediated thermal conductivity (κ L) is typically limited by mutual scattering of phonons, which results in κ L decreasing with inverse temperature, whereas free electrons play a negligible role in κ L. Here, an unusual case in charge-density-wave tantalum disulfide (1T-TaS2) is reported, in which κ L is limited instead by phonon scattering with free electrons, resulting in a temperature-independent κ L. In this system, the conventional phonon-phonon scattering is alleviated by its uniquely structured phonon dispersions, while unusually strong electron-phonon (e-ph) coupling arises from its Fermi surface strongly nested at wavevectors in which phonons exhibit Kohn anomalies. The unusual temperature dependence of thermal conduction is found as a consequence of these effects. The finding reveals new physics of thermal conduction, offers a unique platform to probe e-ph interactions, and provides potential ways to control heat flow in materials with free charge carriers. The temperature-independent thermal conductivity may also find thermal management application as a special thermal interface material between two systems when the heat conduction between them needs to be maintained at a constant level.

6.
J Synchrotron Radiat ; 27(Pt 3): 827-835, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381787

RESUMO

Inelastic X-ray scattering is a powerful and versatile technique for studying lattice dynamics in materials of scientific and technological importance. In this article, the design and capabilities of the momentum-resolved high-energy-resolution inelastic X-ray spectrometer (HERIX) at beamline 30-ID of the Advanced Photon Source are reported. The instrument operates at 23.724 keV and has an energy resolution of 1.3-1.7 meV. It can accommodate momentum transfers of up to 72  nm-1, at a typical X-ray flux of 4.5 × 109 photons s-1 meV-1 at the sample. A suite of in situ sample environments are provided, including high pressure, static magnetic fields and uniaxial strains, all at high or cryogenic temperatures.

7.
Proc Natl Acad Sci U S A ; 117(8): 3930-3937, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32029595

RESUMO

Intrinsically low lattice thermal conductivity ([Formula: see text]) in superionic conductors is of great interest for energy conversion applications in thermoelectrics. Yet, the complex atomic dynamics leading to superionicity and ultralow thermal conductivity remain poorly understood. Here, we report a comprehensive study of the lattice dynamics and superionic diffusion in [Formula: see text] from energy- and momentum-resolved neutron and X-ray scattering techniques, combined with first-principles calculations. Our results settle unresolved questions about the lattice dynamics and thermal conduction mechanism in [Formula: see text] We find that the heat-carrying long-wavelength transverse acoustic (TA) phonons coexist with the ultrafast diffusion of Ag ions in the superionic phase, while the short-wavelength nondispersive TA phonons break down. Strong scattering of phonon quasiparticles by anharmonicity and Ag disorder are the origin of intrinsically low [Formula: see text] The breakdown of short-wavelength TA phonons is directly related to the Ag diffusion, with the vibrational spectral weight associated to Ag oscillations evolving into stochastic decaying fluctuations. Furthermore, the origin of fast ionic diffusion is shown to arise from extended flat basins in the energy landscape and collective hopping behavior facilitated by strong repulsion between Ag ions. These results provide fundamental insights into the complex atomic dynamics of superionic conductors.

8.
Phys Rev Lett ; 122(2): 026101, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30720324

RESUMO

Material properties depend sensitively on the atomic arrangements and atomic bonding, but these are notoriously difficult to measure in nanosized atomic clusters due to the small size of the objects and the challenge of obtaining bulk samples of identical clusters. Here, we have combined the recent ability to make gram quantities of identical semiconductor quantum-dot nanoparticles with the ability to measure lattice dynamics on small sample quantities of hydrogenated materials using high energy resolution inelastic x-ray scattering, to measure the size dependence of the phonon density of states in CdSe quantum dots. The fact that we have atomically precise structural models for these nanoparticles allows the calculation of the phonon density of states using density functional theory, providing both experimental and theoretical confirmations of the important role that the inertia of the surface capping species plays on determining the lattice dynamics.

9.
J Synchrotron Radiat ; 25(Pt 4): 1022-1029, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979163

RESUMO

X-ray free-electron lasers in the oscillator configuration (XFELO) are future fully coherent hard X-rays sources with ultrahigh spectral purity. X-ray beams circulate in an XFELO optical cavity comprising diamond single crystals. They function as high-reflectance (close to 100%), narrowband (∼10 meV) Bragg backscattering mirrors. The average power density of the X-ray beams in the XFELO cavity is predicted to be as high as ∼10 kW mm-2. Therefore, XFELO feasibility relies on the ability of diamond crystals to withstand such a high radiation load and preserve their high reflectivity. Here the endurance of diamond crystals to irradiation with multi-kW mm-2 power density X-ray beams is studied. It is shown that the high Bragg reflectivity of the diamond crystals is preserved after the irradiation, provided it is performed at ∼1 × 10-8 Torr high-vacuum conditions. Irradiation under 4 × 10-6 Torr results in a ∼1 meV shift of the Bragg peak, which corresponds to a relative lattice distortion of 4 × 10-8, while the high Bragg reflectivity stays intact.

10.
J Synchrotron Radiat ; 25(Pt 4): 1030-1035, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979164

RESUMO

In the context of a novel, high-resolution resonant inelastic X-ray scattering spectrometer, a flat-crystal-based quartz analyzer system has recently been demonstrated to provide an unprecedented intrinsic-energy resolution of 3.9 meV at the Ir L3 absorption edge (11.215 keV) [Kim et al. (2018) Sci. Rep. 8, 1958]. However, the overall instrument resolution was limited to 9.7 meV because of an 8.9 meV incident band pass, generated by the available high-resolution four-bounce Si(844) monochromator. In order to better match the potent resolving power of the novel analyzer with the energy band pass of the incident beam, a quartz(309)-based double-bounce, high-resolution monochromator was designed and implemented, expected to yield an overall instrument resolution of 6.0 meV. The choice of lower-symmetry quartz is very attractive because of its wealth of suitable near-backscattering reflections. However, it was found that during room-temperature operation typical levels of incident power, barely affecting the Si monochromator, caused substantial thermal distortions in the first crystal of the quartz monochromator, rendering it practically unusable. Finite-element analyses and heat-flow analyses corroborate this finding. As a high-flux, lower resolution (15.8 meV) alternative, a two-bounce sapphire(078) version was also tested and found to be less affected than quartz, but notably more than silicon.

11.
ACS Nano ; 12(9): 8867-8874, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30052427

RESUMO

The control of phonon propagation in nanoparticle arrays is one of the frontiers of nanotechnology, potentially enabling the discovery of materials with unknown functionalities for potential innovative applications. The exploration of the terahertz window appears quite promising as phonons in this range are the leading carriers of heat transport in insulators and their control is the key to implement devices for heat flow management. Unfortunately, this scientific field is still in its infancy, and even a basic topic such as the influence of floating nanoparticles on the terahertz phonon propagation of a colloidal suspension still eludes a firm answer. Shedding some light on this topic is the main motivation of the present work, which focuses an inelastic X-ray scattering (IXS) measurements on a dilute suspension of Au nanospheres in water. Measured spectra showed a nontrivial shape displaying multiple inelastic features that, based on a Bayesian inference analysis, we assign to phonon modes propagating throughout the nanoparticle interior. Surprisingly, the spectra bear no evidence of propagating modes, which are known to dominate the spectrum of pure water, owing to the scattering that these modes suffer from the sparse nanoparticles in suspension. In perspective, this finding may inspire simple routes to manipulate high-frequency acoustic propagation in hybrid-liquid and solid-materials.

12.
J Synchrotron Radiat ; 25(Pt 2): 373-377, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488915

RESUMO

A novel diced spherical quartz analyzer for use in resonant inelastic X-ray scattering (RIXS) is introduced, achieving an unprecedented energy resolution of 10.53 meV at the Ir L3 absorption edge (11.215 keV). In this work the fabrication process and the characterization of the analyzer are presented, and an example of a RIXS spectrum of magnetic excitations in a Sr3Ir2O7 sample is shown.

13.
Sci Rep ; 8(1): 1958, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386577

RESUMO

Continued improvement of the energy resolution of resonant inelastic x-ray scattering (RIXS) spectrometers is crucial for fulfilling the potential of this technique in the study of electron dynamics in materials of fundamental and technological importance. In particular, RIXS is the only alternative tool to inelastic neutron scattering capable of providing fully momentum resolved information on dynamic spin structures of magnetic materials, but is limited to systems whose magnetic excitation energy scales are comparable to the energy resolution. The state-of-the-art spherical diced crystal analyzer optics provides energy resolution as good as 25 meV but has already reached its theoretical limit. Here, we demonstrate a novel sub-10 meV RIXS spectrometer based on flat-crystal optics at the Ir-L3 absorption edge (11.215 keV) that achieves an analyzer energy resolution of 3.9 meV, very close to the theoretical value of 3.7 meV. In addition, the new spectrometer allows efficient polarization analysis without loss of energy resolution. The performance of the instrument is demonstrated using longitudinal acoustical and optical phonons in diamond, and magnon in Sr3Ir2O7. The novel sub-10 meV RIXS spectrometer thus provides a window into magnetic materials with small energy scales.

14.
Nat Commun ; 8(1): 782, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978909

RESUMO

Strong spin-orbit coupling lifts the degeneracy of t 2g orbitals in 5d transition-metal systems, leaving a Kramers doublet and quartet with effective angular momentum of J eff = 1/2 and 3/2, respectively. These spin-orbit entangled states can host exotic quantum phases such as topological Mott state, unconventional superconductivity, and quantum spin liquid. The lacunar spinel GaTa4Se8 was theoretically predicted to form the molecular J eff = 3/2 ground state. Experimental verification of its existence is an important first step to exploring the consequences of the J eff = 3/2 state. Here, we report direct experimental evidence of the J eff = 3/2 state in GaTa4Se8 by means of excitation spectra of resonant inelastic X-ray scattering at the Ta L3 and L2 edges. We find that the excitations involving the J eff = 1/2 molecular orbital are absent only at the Ta L2 edge, manifesting the realization of the molecular J eff = 3/2 ground state in GaTa4Se8.The strong interaction between electron spin and orbital degrees of freedom in 5d oxides can lead to exotic electronic ground states. Here the authors use resonant inelastic X-ray scattering to demonstrate that the theoretically proposed J eff = 3/2 state is realised in GaTa4Se8.

15.
Adv Mater ; 29(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27786379

RESUMO

Dimensional tunability from two dimensions to one dimension is demonstrated for the first time using an artificial superlattice method in synthesizing 1D stripes from 2D layered materials. The 1D confinement of layered Sr2 IrO4 induces distinct 1D quantum-confined electronic states, as observed from optical spectroscopy and resonant inelastic X-ray scattering. This 1D superlattice approach is generalizable to a wide range of layered materials.

16.
Phys Rev Lett ; 117(12): 126101, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689284

RESUMO

Slow highly charged ions have been utilized recently for the creation of monotype surface nanostructures (craters, calderas, or hillocks) in different materials. In the present study, we report on the ability of slow highly charged xenon ions (^{129}Xe^{Q+}) to form three different types of nanostructures on the LiF(100) surface. By increasing the charge state from Q=15 to Q=36, the shape of the impact induced nanostructures changes from craters to hillocks crossing an intermediate stage of caldera structures. A dimensional analysis of the nanostructures reveals an increase of the height up to 1.5 nm as a function of the potential energy of the incident ions. Based on the evolution of both the geometry and size of the created nanostructures, defect-mediated desorption and the development of a thermal spike are utilized as creation mechanisms of the nanostructures at low and high charge states, respectively.

17.
Stem Cell Investig ; 2: 21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27358889

RESUMO

BACKGROUND: Mobilizing hematopoietic stem cells may be a promising intervention for the treatment of idiopathic dilated cardiomyopathy (IDCM) in infant and children. So the aim of the work is to evaluate the efficacy of granulocyte-colony stimulating factor (G-CSF) as a therapeutic modality in pediatric IDCM. METHODS: A randomized clinical trial was conducted on 40 pediatric patients with IDCM. They were subjected to history taking, clinical examination, serum lactate dehydrogenase (LDH), total creatinine phosphokinase (CPK), creatinine phosphokinase isoenzyme B (CK-MB) isoenzyme, and peripheral blood CD34(+) cell assessment before and at day 7 after subcutaneous G-CSF injection for 5 consecutive days. Echocardiography was done before and 1, 3 and 6 months after therapy. RESULTS: Clinical improvement in the form of regression of patients Modified Ross heart failure (MRHC) classification classes. Increased percentage of CD34(+) mobilized cells from the bone marrow, and significant increase in blood counts especially white blood cells 7 days after G-CSF injection. Significant improvement was found in echocardiographic data evaluating systolic function of the heart [Ejection fraction, Fractional shortening and systolic velocity at mitral annulus (Sm)]. CONCLUSIONS: Administration of G-CSF may be beneficial in improving systolic functions of the heart in pediatric IDCM and more studies with a large number of patients are needed.

18.
Nature ; 515(7528): 535-9, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25383524

RESUMO

Phase competition underlies many remarkable and technologically important phenomena in transition metal oxides. Vanadium dioxide (VO2) exhibits a first-order metal-insulator transition (MIT) near room temperature, where conductivity is suppressed and the lattice changes from tetragonal to monoclinic on cooling. Ongoing attempts to explain this coupled structural and electronic transition begin with two alternative starting points: a Peierls MIT driven by instabilities in electron-lattice dynamics and a Mott MIT where strong electron-electron correlations drive charge localization. A key missing piece of the VO2 puzzle is the role of lattice vibrations. Moreover, a comprehensive thermodynamic treatment must integrate both entropic and energetic aspects of the transition. Here we report that the entropy driving the MIT in VO2 is dominated by strongly anharmonic phonons rather than electronic contributions, and provide a direct determination of phonon dispersions. Our ab initio calculations identify softer bonding in the tetragonal phase, relative to the monoclinic phase, as the origin of the large vibrational entropy stabilizing the metallic rutile phase. They further reveal how a balance between higher entropy in the metal and orbital-driven lower energy in the insulator fully describes the thermodynamic forces controlling the MIT. Our study illustrates the critical role of anharmonic lattice dynamics in metal oxide phase competition, and provides guidance for the predictive design of new materials.

19.
Sci Rep ; 4: 6282, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25186916

RESUMO

Magnetite exhibits unique electronic, magnetic, and structural properties in extreme conditions that are of great research interest. Previous studies have suggested a number of transitional models, although the nature of magnetite at high pressure remains elusive. We have studied a highly stoichiometric magnetite using inelastic X-ray scattering, X-ray diffraction and emission, and Raman spectroscopies in diamond anvil cells up to ~20 GPa, while complementary electrical conductivity measurements were conducted in a cubic anvil cell up to 8.5 GPa. We have observed an elastic softening in the diagonal elastic constants (C11 and C44) and a hardening in the off-diagonal constant (C12) at ~8 GPa where significant elastic anisotropies in longitudinal and transverse acoustic waves occur, especially along the [110] direction. An additional vibrational Raman band between the A1g and T2g modes was also detected at the transition pressure. These abnormal elastic and vibrational behaviors of magnetite are attributed to the occurrence of the octahedrally-coordinated Fe(2+)-Fe(3+)-Fe(2+) ions charge-ordering along the [110] direction in the inverse spinel structure. We propose a new phase diagram of magnetite in which the temperature for the metal-insulator and distorted structural transitions decreases with increasing pressure while the charge-ordering transition occurs at ~8 GPa and room temperature.

20.
J Chem Phys ; 139(18): 184507, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24320284

RESUMO

Inelastic X-ray and neutron scattering techniques were jointly used to investigate the dynamics of water-glycerol mixtures at different concentrations and temperatures. It was observed that even relatively low concentrations of glycerol increase the damping of shear modes, as a consequence of the known ability of glycerol to disrupt the hydrogen bond network of water. A similar trend was observed when increasing the temperature, which suggests the presence of a locus in the concentration-temperature plane marking a crossover in the shear modulus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...