Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 319: 124177, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33035863

RESUMO

Microbial electrosynthesis (MES) for CO2 valorization could be influenced by fluctuations in CO2 mass transfer and flow rates. In this study, we developed an efficient method for CO2 delivery to cathodic biofilm by directly sparging CO2 through the pores of ceramic hollow fiber wrapped with Ni-foam/carbon nanotube electrode, and obtained 45% and 77% higher acetate and methane production, respectively. This was followed by the MES stability test in response to fluctuations in CO2 flow rates varying from 0.3 ml/min to 10 ml/min. The biochemical production exhibited an increasing trend with CO2 flow rates, achieving higher acetate (47.0 ± 18.4 mmol/m2/day) and methane (240.0 ± 32.2 mmol/m2/day) generation at 10 ml/min with over 90% coulombic efficiency. The biofilm and suspended biomass, however, showed high resistance to CO2 flow fluctuations with Methanobacterium and Acetobacterium accounting for 80% of the total microbial community, which suggests the robustness of MES for onsite carbon conversion.


Assuntos
Acetobacterium , Dióxido de Carbono , Eletrodos , Metano , Methanobacterium
2.
Water Res ; 188: 116575, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152589

RESUMO

Two methods were examined to improve methane production efficiency in anaerobic digestion (AD) based on adding a large amount of surface area using a single electrically conductive carbon brush, or by adding electrodes as done in microbial electrolysis cells (MECs) to form a hybrid AD-MEC. To examine the impact of surface area relative to electrodes, AD reactors were fitted with a single large brush without electrodes (FB), half a large brush with two electrodes with an applied voltage (0.8 V) and operated in closed circuit (HB-CC) or open circuit (HB-OC) mode, or only two electrodes with a closed circuit and no large brush (NB-CC) (equivalent to an MEC). The three configurations with a half or full brush all had improved performance as shown by 57-82% higher methane generation rate parameters in the Gompertz model compared to NB-CC. The retained biomass was much higher in the reactors with large brush, which likely contributed to the rapid consumption of volatile fatty acids (VFAs) and therefore improved AD performance. A different microbial community structure was formed in the large-size brushes compared to the electrodes. Methanothrix was predominant in the biofilm of large-size carbon brush, while Geobacter (anode) and Methanobacterium (cathode) were highly abundant in the electrode biofilms. These results demonstrate that adding a high surface area carbon fiber brush will be a more effective method of improving AD performance than using MEC electrodes with an applied voltage.


Assuntos
Reatores Biológicos , Eletrólise , Anaerobiose , Fibra de Carbono , Eletrodos , Metano
3.
Sci Rep ; 10(1): 19824, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188217

RESUMO

Microbial electrosynthesis exploits the catalytic activity of microorganisms to utilize a cathode as an electron donor for reducing waste CO2 to valuable fuels and chemicals. Electromethanogenesis is the process of CO2 reduction to CH4 catalyzed by methanogens using the cathode directly as a source of electrons or indirectly via H2. Understanding the effects of different set cathode potentials on the functional dynamics of electromethanogenic communities is crucial for the rational design of cathode materials. Replicate enriched electromethanogenic communities were subjected to different potentials (- 1.0 V and - 0.7 V vs. Ag/AgCl) and the potential-induced changes were analyzed using a metagenomic and metatranscriptomic approach. The most abundant and transcriptionally active organism on the biocathodes was a novel species of Methanobacterium sp. strain 34x. The cathode potential-induced changes limited electron donor availability and negatively affected the overall performance of the reactors in terms of CH4 production. Although high expression of key genes within the methane and carbon metabolism pathways was evident, there was no significant difference in transcriptional response to the different set potentials. The acetyl-CoA decarbonylase/synthase (ACDS) complex were the most highly expressed genes, highlighting the significance of carbon assimilation under limited electron donor conditions and its link to the methanogenesis pathway.

4.
Sci Total Environ ; : 142668, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33077225

RESUMO

Microbial inocula from marine origins are less explored for CO2 reduction in microbial electrosynthesis (MES) system, although effective CO2-fixing communities in marine environments are well-documented. We explored natural saline habitats, mainly salt marsh (SM) and mangrove (M) sediments, as potential inoculum sources for enriching salt-tolerant CO2 reducing community using two enrichment strategies: H2:CO2 (80:20) enrichment in serum vials and enrichment in cathode chamber of MES reactors operated at -1.0 V vs. Ag/AgCl. Porous ceramic hollow tube wrapped with carbon cloth was used as cathode and for direct CO2 delivery to CO2 reducing communities growing on the cathode surface. Methanogenesis was dominant in both the M- and SM-seeded MES and the methanogenic Archaea Methanococcus was the most dominant genus. Methane production was slightly higher in the SM-seeded MES (4.9 ± 1.7 mmol) compared to the M-seeded MES (3.8 ± 1.1 mmol). In contrast, acetate production was almost two times higher in the M-seeded MES (3.1 ± 0.9 mmol) than SM-seeded MES (1.5 ± 1.3 mmol). The high relative abundance of the genus Acetobacterium in the M-seeded serum vials correlates with the high acetate production obtained. The different enrichment strategies affected the community composition, though the communities in MES reactors and serum vials were performing similar functions (methanogenesis and acetogenesis). Despite similar operating conditions, the microbial community composition of M-seeded serum vials and MES reactors differed from the SM-seeded serum vials and MES reactors, supporting the importance of inoculum source in the evolution of CO2-reducing microbial communities.

5.
Front Microbiol ; 11: 1637, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733431

RESUMO

There is a lack of understanding of the interaction between anammox bacteria and the flanking microbial communities in both freshwater (non-saline) and marine (saline) ecosystems. Here, we present a comparative genome-based exploration of two different anammox bioreactors, through the analysis of 23 metagenome-assembled genomes (MAGs), 12 from freshwater anammox reactor (FWR), and 11 from marine anammox reactor (MWR). To understand the contribution of individual members to community functions, we applied the index of replication (iRep) to determine bacteria that are actively replicating. Using genomic content and iRep information, we provided a potential ecological role for the dominant members of the community based on the reactor operating conditions. In the non-saline system, anammox (Candidatus Brocadia sinica) and auxotrophic neighboring bacteria belonging to the phyla Ignavibacteriae and Chloroflexi might interact to reduce nitrate to nitrite for direct use by anammox bacteria. Whereas, in the saline reactor, anammox bacterium (Ca. Scalindua erythraensis) and flanking community belonging to phyla Planctomycetes (different than anammox bacteria)-which persistently growing in the system-may catabolize detritus and extracellular material and recycle nitrate to nitrite for direct use by anammox bacteria. Despite different microbial communities, there was functional redundancy in both ecosystems. These results signify the potential application of marine anammox bacteria for treating saline N-rich wastewaters.

6.
Water Res ; 185: 116284, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818731

RESUMO

Surface chemistry is known to influence the formation, composition, and electroactivity of electron-conducting biofilms. However, understanding of the evolution of microbial composition during biofilm development and its impact on the electrochemical response is limited. Here we present voltammetric, microscopic and microbial community analysis of biofilms formed under fixed applied potential for modified graphite electrodes during early (90 h) and mature (340 h) growth phases. Electrodes modified to introduce hydrophilic groups (-NH2, -COOH and -OH) enhance early-stage biofilm formation compared to unmodified or electrodes modified with hydrophobic groups (-C2H5). In addition, early-stage films formed on hydrophilic electrodes are dominated by the gram-negative sulfur-reducing bacterium Desulfuromonas acetexigens while Geobacter sp. dominates on -C2H5 and unmodified electrodes. As biofilms mature, current generation becomes similar, and D. acetexigens dominates in all biofilms irrespective of surface chemistry. Electrochemistry of pure culture D. acetexigens biofilms reveal that this microbe is capable of forming electroactive biofilms producing considerable current density of > 9 A/m2 in a short period of potential-induced growth (~19 h following inoculation) using acetate as an electron donor. The inability of D. acetexigens biofilms to use H2 as a sole source electron donor for current generation shows promise for maximizing H2 recovery in single-chambered microbial electrolysis cell systems treating wastewaters.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Biofilmes , Desulfuromonas , Eletrodos
7.
Nat Commun ; 11(1): 2058, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345973

RESUMO

Anaerobic ammonium oxidation (anammox) bacteria contribute significantly to the global nitrogen cycle and play a major role in sustainable wastewater treatment. Anammox bacteria convert ammonium (NH4+) to dinitrogen gas (N2) using intracellular electron acceptors such as nitrite (NO2-) or nitric oxide (NO). However, it is still unknown whether anammox bacteria have extracellular electron transfer (EET) capability with transfer of electrons to insoluble extracellular electron acceptors. Here we show that freshwater and marine anammox bacteria couple the oxidation of NH4+ with transfer of electrons to insoluble extracellular electron acceptors such as graphene oxide or electrodes in microbial electrolysis cells. 15N-labeling experiments revealed that NH4+ was oxidized to N2 via hydroxylamine (NH2OH) as intermediate, and comparative transcriptomics analysis revealed an alternative pathway for NH4+ oxidation with electrode as electron acceptor. Complete NH4+ oxidation to N2 without accumulation of NO2- and NO3- was achieved in EET-dependent anammox. These findings are promising in the context of implementing EET-dependent anammox process for energy-efficient treatment of nitrogen.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Espaço Extracelular/metabolismo , Anaerobiose , Eletroquímica , Eletrólise , Transporte de Elétrons , Oxirredução , Fatores de Tempo
8.
Bioresour Technol ; 302: 122863, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32019708

RESUMO

Recycling CO2 into organic products through microbial electrosynthesis (MES) is attractive from the perspective of circular bioeconomy. However, several challenges need to be addressed before scaling-up MES systems. In this review, recent advances in electrode materials, microbe-catalyzed CO2 reduction and MES energy consumption are discussed in detail. Anode materials are briefly reviewed first, with several strategies proposed to reduce the energy input for electron generation and enhance MES bioeconomy. This was followed by discussions on MES cathode materials and configurations for enhanced chemolithoautotroph growth and CO2 reduction. Various chemolithoautotrophs, effective for CO2 reduction and diverse bioproduct formation, on MES cathode were also discussed. Finally, research efforts on developing cost-effective process for bioproduct extraction from MES are presented. Future perspectives to improve product formation and reduce energy cost are discussed to realize the application of the MES as a chemical production platform in the context of building a circular economy.


Assuntos
Dióxido de Carbono , Eletrodos
9.
Water Res ; 170: 115345, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805498

RESUMO

Seawater can be directly used for toilet flushing in coastal areas to reduce our dependence on desalination and freshwater resources. The presence of high-salt content in the generated wastewater from seawater toilet flushing could limit the performance of conventional biological nitrogen removal processes. Anaerobic ammonium oxidation (anammox) process is regarded as one of the most energy-efficient process for nitrogen removal from N-rich waste streams. In this study, we demonstrated the application of a novel marine anammox bacterium (Candidatus Scalindua sp. AMX11) in a membrane bioreactor (MBR) to treat moderate-saline (∼1.2% salinity) and N-rich organic (2 mM acetate) solution, prepared using real seawater. The MBR showed stable performance with nitrogen removal rate of 0.3 kg-N m-3 d-1 at >90% N-removal efficiency. Furthermore, results of 15N stable isotope experiments revealed that anammox bacteria was mainly responsible for respiratory ammonification through NO3- reduction to NH4+ via NO2-, and the by-products of respiratory ammonification were used as substrates by anammox bacteria. The dominant role of anammox bacteria in nitrogen removal under saline and organic conditions was further confirmed by genome-centric combined metagenomics and meta-transcriptomic approach. Taken together, these results highlight the potential application of marine anammox bacteria for treating saline wastewater generated from seawater toilet flushing practices.


Assuntos
Carbono , Nitrogênio , Bactérias , Reatores Biológicos , Desnitrificação , Oxirredução , Salinidade
10.
Front Microbiol ; 10: 2563, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787955

RESUMO

Homoacetogens are efficient CO2 fixing bacteria using H2 as electron donor to produce acetate. These organisms can be enriched at the biocathode of microbial electrosynthesis (MES) for electricity-driven CO2 reduction to acetate. Studies exploring homoacetogens in MES are mainly conducted using pure or mix-culture anaerobic inocula from samples with standard environmental conditions. Extreme marine environments host unique microbial communities including homoacetogens that may have unique capabilities due to their adaptation to harsh environmental conditions. Anaerobic deep-sea brine pools are hypersaline and metalliferous environments and homoacetogens can be expected to live in these environments due to their remarkable metabolic flexibility and energy-efficient biosynthesis. However, brine pools have never been explored as inocula for the enrichment of homacetogens in MES. Here we used the saline water from a Red Sea brine pool as inoculum for the enrichment of halophilic homoacetogens at the biocathode (-1 V vs. Ag/AgCl) of MES. Volatile fatty acids, especially acetate, along with hydrogen gas were produced in MES systems operated at 25 and 10% salinity. Acetate concentration increased when MES was operated at a lower salinity ∼3.5%, representing typical seawater salinity. Amplicon sequencing and genome-centric metagenomics of matured cathodic biofilm showed dominance of the genus Marinobacter and phylum Firmicutes at all tested salinities. Seventeen high-quality draft metagenome-assembled genomes (MAGs) were extracted from the biocathode samples. The recovered MAGs accounted for 87 ± 4% of the quality filtered sequence reads. Genome analysis of the MAGs suggested CO2 fixation via Wood-Ljundahl pathway by members of the phylum Firmicutes and the fixed CO2 was possibly utilized by Marinobacter sp. for growth by consuming O2 escaping from the anode to the cathode for respiration. The enrichment of Marinobacter sp. with homoacetogens was only possible because of the specific cathodic environment in MES. These findings suggest that in organic carbon-limited saline environments, Marinobacter spp. can live in consortia with CO2 fixing bacteria such as homoacetogens, which can provide them with fixed carbon as a source of carbon and energy.

11.
Microbiol Resour Announc ; 8(45)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699767

RESUMO

A draft genome sequence of Methanobacterium sp. strain 34x was reconstructed from the metagenome of an enriched electromethanogenic biocathode operated in a microbial electrosynthesis (MES) reactor. Methanobacterium sp. strain 34x has 68.98% nucleotide-level genomic similarity with the closest related methanogen available with a whole-genome assembly, Methanobacterium lacus strain AL-21. This genome will provide insight into the functional potential of methanogens at the biocathodes of MES systems.

12.
Front Microbiol ; 10: 1747, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417533

RESUMO

Microbial electrosynthesis (MES) has been gaining considerable interest as the next step in the evolution of microbial electrochemical technologies. Understanding the niche biocathode environment and microbial community is critical for further developing this technology as the biocathode is key to product formation and efficiency. MES is generally operated to enrich a specific functional group (e.g., methanogens or homoacetogens) from a mixed-culture inoculum. However, due to differences in H2 and CO2 availability across the cathode surface, competition and syntrophy may lead to overall variability and significant beta-diversity within and between replicate reactors, which can affect performance reproducibility. Therefore, this study aimed to investigate the distribution and potential spatial variability of the microbial communities in MES methanogenic biocathodes. Triplicate methanogenic biocathodes were enriched in microbial electrolysis cells for 5 months at an applied voltage of 0.7 V. They were then transferred to triplicate dual-chambered MES reactors and operated at -1.0 V vs. Ag/AgCl for six batches. At the end of the experiment, triplicate samples were taken at different positions (top, center, bottom) from each biocathode for a total of nine samples for total biomass protein analysis and 16S rRNA gene amplicon sequencing. Microbial community analyses showed that the biocathodes were highly enriched with methanogens, especially the hydrogenotrophic methanogen family Methanobacteriaceae, Methanobacterium sp., and the mixotrophic Methanosarcina sp., with an overall core community representing > 97% of sequence reads in all samples. There was no statistically significant spatial variability (p > 0.05) observed in the distribution of these communities within and between the reactors. These results suggest deterministic community assembly and indicate the reproducibility of electromethanogenic biocathode communities, with implications for larger-scale reactors.

13.
Mar Pollut Bull ; 149: 110508, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31425842

RESUMO

In this study, the shoreline of Lebanon, which extends over 225 km along the eastern side of the Mediterranean Sea, was characterized for its sediment microbial community diversity and composition using 16S rRNA gene sequencing with Illumina MiSeq technology. Non-metric multidimensional scaling (NMDS) analysis showed no clear grouping among nearby sampled sites along the shoreline. Insignificant diversion between the wet and dry season microbial communities was observed along the coast at each sampling site. A high variation at the genus level was observed, with several novel genera identified at high relative abundance in certain locations, such as JTB255 marine benthic groups OTU_4 (5.4%) and OTU_60 (3.2%), and BD7-8 marine group OTU_5 (2.9%).


Assuntos
Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Biodegradação Ambiental , Biodiversidade , Líbano , Mar Mediterrâneo , Microbiota/genética , Petróleo/metabolismo , Poluição por Petróleo/análise , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Microbiologia da Água
14.
Environ Sci Technol ; 53(14): 8291-8301, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31194515

RESUMO

In aerobic granular sludge (AGS) systems, different-sized microbial aggregates having different solids retention time (SRT) coexist in the same reactor compartment and are subjected to the same influent wastewater. Thus, the AGS system provides a unique ecosystem to study the importance of local (species sorting) and regional (immigration) processes in bacterial community assembly. The microbial communities of different-sized aggregates (flocs <0.2 mm, small granules (0.2-1.0 mm) and large granules >1.0 mm), influent wastewater, excess sludge and effluent of a full-scale AGS plant were characterized over a steady-state operation period of 6 months. Amplicon sequencing was integrated with mass balance to determine the SRT and net growth rate of operational taxonomic units (OTUs). We found strong evidence of species sorting as opposed to immigration, which was significantly higher at short SRT (i.e., flocs and small granules) than that at long SRT (large granules). Rare OTUs in wastewater belonging to putative functional groups responsible for nitrogen and phosphorus removal were progressively enriched with an increase in microbial aggregates size. In contrast, fecal- and sewage infrastructure-derived microbes progressively decreased in relative abundance with increase in microbial aggregate size. These findings highlight the importance of AGS as a unique model ecosystem to study fundamental microbial ecology concepts.


Assuntos
Reatores Biológicos , Esgotos , Aerobiose , Bactérias , Ecossistema , Emigração e Imigração , Eliminação de Resíduos Líquidos
15.
Microbiol Resour Announc ; 8(20)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097503

RESUMO

A novel anaerobic ammonium-oxidizing (anammox) bacterium was detected in an upflow column reactor treating synthetic nitrogen-rich saline solution. Here, we assembled a 4.59-Mb draft genome sequence of this bacterium, identified as a member of the genus "Candidatus Scalindua," that has 84% nucleotide-level genomic similarity with the closest related anammox bacterium ("Candidatus Scalindua rubra").

16.
Curr Opin Biotechnol ; 57: 101-110, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30953903

RESUMO

Microbial electrolysis cell (MEC) is an anaerobic biological process for the conversion of organics in wastewater into renewable energy in the form of hydrogen or methane. However, MEC cannot be used as a standalone technology for urban wastewater treatment, and post-treatment or integrated processes are required to meet water reuse and discharge limits. Recent advances in material science and the discovery of new microorganisms capable of extracellular electron transfer to the electrodes have widened the integration opportunities of MEC in mainstream and side-stream urban wastewater treatment. This review addresses recent developments in the integration of MEC with other processes such as membrane filtration, anaerobic ammonium oxidation and anaerobic digestion, as well as discusses current challenges and new integration opportunities.


Assuntos
Bactérias/metabolismo , Eletrólise , Águas Residuárias , Purificação da Água/métodos , Fontes de Energia Bioelétrica , Reatores Biológicos/microbiologia
17.
Nat Rev Microbiol ; 17(5): 307-319, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30846876

RESUMO

A vast array of microorganisms from all three domains of life can produce electrical current and transfer electrons to the anodes of different types of bioelectrochemical systems. These exoelectrogens are typically iron-reducing bacteria, such as Geobacter sulfurreducens, that produce high power densities at moderate temperatures. With the right media and growth conditions, many other microorganisms ranging from common yeasts to extremophiles such as hyperthermophilic archaea can also generate high current densities. Electrotrophic microorganisms that grow by using electrons derived from the cathode are less diverse and have no common or prototypical traits, and current densities are usually well below those reported for model exoelectrogens. However, electrotrophic microorganisms can use diverse terminal electron acceptors for cell respiration, including carbon dioxide, enabling a variety of novel cathode-driven reactions. The impressive diversity of electroactive microorganisms and the conditions in which they function provide new opportunities for electrochemical devices, such as microbial fuel cells that generate electricity or microbial electrolysis cells that produce hydrogen or methane.


Assuntos
Archaea/fisiologia , Bactérias/metabolismo , Fontes de Energia Bioelétrica , Eletricidade , Biofilmes , Eletrodos , Eletrólise , Transporte de Elétrons , Geobacter/fisiologia , Hidrogênio/metabolismo , Metano/metabolismo
18.
Environ Sci Technol ; 53(7): 3977-3986, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30810037

RESUMO

Direct comparisons of microbial fuel cells based on maximum power densities are hindered by different reactor and electrode sizes, solution conductivities, and materials. We propose an alternative method here, the electrode potential slope (EPS) analysis, to enable quantitative comparisons based on anode and cathode area-based resistances and operating potentials. Using EPS analysis, the brush anode resistance ( RAn = 10.6 ± 0.5 mΩ m2) was shown to be 28% lower than the resistance of a 70% porosity diffusion layer (70% DL) cathode ( RCat = 14.8 ± 0.9 mΩ m2) and 24% lower than the solution resistance ( RΩ = 14 mΩ m2) (acetate in a 50 mM phosphate buffer solution). Using a less porous cathode (30% DL) did not impact the cathode resistance but did reduce the cathode performance due to a lower operating potential. With low-conductivity domestic wastewater ( RΩ = 87 mΩ m2), both electrodes had higher resistances [ RAn = 75 ± 9 mΩ m2, and RCat = 54 ± 7 mΩ m2 (70% DL)]. Our analysis of the literature using EPS analysis shows how electrode resistances can easily be quantified to compare system performance when the electrode distances are changed or the sizes of the electrodes are different.


Assuntos
Fontes de Energia Bioelétrica , Difusão , Condutividade Elétrica , Eletricidade , Eletrodos , Águas Residuárias
19.
Front Microbiol ; 9: 2205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283424

RESUMO

We sampled the tap water of seven unique, full-scale drinking water distribution systems at different locations as well as the corresponding treatment plant effluents to evaluate the impact of distribution and the potential presence of a core drinking water microbiome. The water was also sampled during network flushing to examine its effect on the microbial ecology. While a core microbiome dominated by Gammaproteobacteria was found using 16S rRNA gene pyrosequencing, an increase in biomass was detected in the networks, especially during flushing. Water age did not significantly impact the microbiology. Irrespective of differences in treatment plants, tap water bacterial communities in the distinct networks converged and highly resembled the flushed water communities. Piping biofilm and sediment communities therefore largely determine the final tap water microbial quality, attenuating the impact of water source and treatment strategy and highlighting the fundamental role of local physicochemical conditions and microbial processes within infrastructure micro-niches.

20.
Environ Sci Technol ; 52(15): 8977-8985, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29965737

RESUMO

Low solution conductivity is known to adversely impact power generation in microbial fuel cells (MFCs), but its impact on measured electrode potentials has often been neglected in the reporting of electrode potentials. While errors in the working electrode (typically the anode) are usually small, larger errors can result in reported counter electrode potentials (typically the cathode) due to large distances between the reference and working electrodes or the use of whole cell voltages to calculate counter electrode potentials. As shown here, inaccurate electrode potentials impact conclusions concerning factors limiting power production in MFCs at higher current densities. To demonstrate how the electrochemical measurements should be adjusted using the solution conductivity, electrode potentials were estimated in MFCs with brush anodes placed close to the cathode (1 cm) or with flat felt anodes placed further from the cathode (3 cm) to avoid oxygen crossover to the anodes. The errors in the cathode potential for MFCs with brush anodes reached 94 mV using acetate in a 50 mM phosphate buffer solution. With a felt anode and acetate, cathode potential errors increased to 394 mV. While brush anode MFCs produced much higher power densities than flat anode MFCs under these conditions, this better performance was shown primarily to result from electrode spacing following correction of electrode potentials. Brush anode potentials corrected for solution conductivity were the same for brushes set 1 or 3 cm from the cathode, although the range of current produced was different due to ohmic losses with the larger distance. These results demonstrate the critical importance of using corrected electrode potentials to understand factors limiting power production in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Condutividade Elétrica , Impedância Elétrica , Eletrodos , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...