Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Am J Hum Genet ; 104(5): 925-935, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982609


Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.

ACS Appl Mater Interfaces ; 9(26): 21651-21659, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28585801


Acid-base homeostasis (body pH) inside the body is precisely controlled by the kidneys and lungs and buffer systems, such that even a minor pH change could severely affect many organs. Blood and urine pH tests are common in day-to-day clinical trials and require little effort for diagnosis. There is always a great demand for in vivo testing to understand more about body metabolism and to provide effective diagnosis and therapy. In this article, we report the simple fabrication of microneedle-based direct, label-free, and real-time pH sensors. The reference and working electrodes were Ag/AgCl thick films and ZnO thin films on tungsten (W) microneedles, respectively. The morphological and structural characteristics of microneedles were carefully investigated through various analytical methods. The developed sensor exhibited a Nernstian response of -46 mV/pH. Different conditions were used to test the sensor to confirm their accuracy and stability, such as various buffer solutions, with respect to time, and we compared the reading with commercial pH electrodes. Besides that, the fabricated microneedle sensor ability is proven by in vivo testing in mouse cerebrospinal fluid (CSF) and bladders. The pH sensor procedure reported here is totally reversible, and results were reproducible after several rounds of testing.

Bexiga Urinária/química , Animais , Técnicas Biossensoriais , Eletrodos , Concentração de Íons de Hidrogênio , Camundongos , Agulhas
Biochem Biophys Res Commun ; 479(3): 517-522, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27664704


Mast cells undergo degranulation in response to various stimuli and rapidly release pre-formed mediators present in secretory granules, leading to immediate-type allergic reactions. Mast cell degranulation is commonly detected and quantified in vitro by measuring histamine or ß-hexosaminidase released to culture medium. However, this type of assay cannot monitor degranulation of individual cells in real time, and it is not suitable for in vivo detection of degranulation. At the aim of real time imaging of mast cell degranulation at single cell level, we here developed a fluorescent protein-based indicator of degranulation, designated immuno-pHluorin (impH). When expressed in mast cells, impH is located in the membrane of secretory granules and non-fluorescent under homeostatic conditions while it turns fluorescent following degranulation, due to the pH change inside of granules during exocytosis. impH enabled us to detect polarized degranulation within one single cell when mast cells were stimulated via the small area of cell surface. Transplantation of impH-expressing mast cells into mast cell-deficient mice demonstrated that impH could function as a real-time indicator of degranulation in vivo. Thus, impH is a useful tool for imaging of mast cell activation and degranulation in vitro and in vivo, and may be applied for screening of reagents regulating mast cell degranulation.

Degranulação Celular , Proteínas de Fluorescência Verde/química , Liberação de Histamina , Mastócitos/citologia , Animais , Células da Medula Óssea/citologia , Meios de Cultura , Exocitose , Corantes Fluorescentes/química , Histamina/química , Homeostase , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/química , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia de Fluorescência , Proteínas R-SNARE/química , Vesículas Secretórias/metabolismo , Fatores de Tempo , beta-N-Acetil-Hexosaminidases/química