Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Nat Rev Genet ; 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013567

RESUMO

Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.

2.
Acta Crystallogr D Struct Biol ; 77(Pt 12): 1486-1496, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866606

RESUMO

Structures of many complex biological assemblies are increasingly determined using integrative approaches, in which data from multiple experimental methods are combined. A standalone system, called PDB-Dev, has been developed for archiving integrative structures and making them publicly available. Here, the data standards and software tools that support PDB-Dev are described along with the new and updated components of the PDB-Dev data-collection, processing and archiving infrastructure. Following the FAIR (Findable, Accessible, Interoperable and Reusable) principles, PDB-Dev ensures that the results of integrative structure determinations are freely accessible to everyone.

3.
Elife ; 102021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874007

RESUMO

The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.

4.
Elife ; 102021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821217

RESUMO

The positive transcription elongation factor b (P-TEFb) is a critical coactivator for transcription of most cellular and viral genes, including those of HIV. While P-TEFb is regulated by 7SK snRNA in proliferating cells, P-TEFb is absent due to diminished levels of CycT1 in quiescent and terminally differentiated cells, which has remained unexplored. In these cells, we found that CycT1 not bound to CDK9 is rapidly degraded. Moreover, productive CycT1:CDK9 interactions are increased by PKC-mediated phosphorylation of CycT1 in human cells. Conversely, dephosphorylation of CycT1 by PP1 reverses this process. Thus, PKC inhibitors or removal of PKC by chronic activation results in P-TEFb disassembly and CycT1 degradation. This finding not only recapitulates P-TEFb depletion in resting CD4+ T cells but also in anergic T cells. Importantly, our studies reveal mechanisms of P-TEFb inactivation underlying T cell quiescence, anergy, and exhaustion as well as proviral latency and terminally differentiated cells.

5.
Protein Sci ; 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34676613

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB-designated Archive Keeper. Annually, RCSB PDB serves tens of thousands of three-dimensional (3D) macromolecular structure data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) from all inhabited continents. RCSB PDB makes PDB data available from its research-focused RCSB.org web portal at no charge and without usage restrictions to millions of PDB data consumers working in every nation and territory worldwide. In addition, RCSB PDB operates an outreach and education PDB101.RCSB.org web portal that was used by more than 800,000 educators, students, and members of the public during calendar year 2020. This invited Tools Issue contribution describes (i) how the archive is growing and evolving as new experimental methods generate ever larger and more complex biomolecular structures; (ii) the importance of data standards and data remediation in effective management of the archive and facile integration with more than 50 external data resources; and (iii) new tools and features for 3D structure analysis and visualization made available during the past year via the RCSB.org web portal.

6.
Mol Cell Proteomics ; 20: 100132, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389466

RESUMO

Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFß) to determine the structure of the (A3G-Vif-CRL5-CBFß) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFß complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.

7.
Mol Cell Proteomics ; 20: 100139, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34418567

RESUMO

Proteomics methodology has expanded to include protein structural analysis, primarily through cross-linking mass spectrometry (XL-MS) and hydrogen-deuterium exchange mass spectrometry (HX-MS). However, while the structural proteomics community has effective tools for primary data analysis, there is a need for structure modeling pipelines that are accessible to the proteomics specialist. Integrative structural biology requires the aggregation of multiple distinct types of data to generate models that satisfy all inputs. Here, we describe IMProv, an app in the Mass Spec Studio that combines XL-MS data with other structural data, such as cryo-EM densities and crystallographic structures, for integrative structure modeling on high-performance computing platforms. The resource provides an easily deployed bundle that includes the open-source Integrative Modeling Platform program (IMP) and its dependencies. IMProv also provides functionality to adjust cross-link distance restraints according to the underlying dynamics of cross-linked sites, as characterized by HX-MS. A dynamics-driven conditioning of restraint values can improve structure modeling precision, as illustrated by an integrative structure of the five-membered Polycomb Repressive Complex 2. IMProv is extensible to additional types of data.

8.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34453000

RESUMO

Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic ß-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic ß-Cell Consortium.

9.
Elife ; 102021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949948

RESUMO

Microtubule (MT) nucleation is regulated by the γ-tubulin ring complex (γTuRC), conserved from yeast to humans. In Saccharomyces cerevisiae, γTuRC is composed of seven identical γ-tubulin small complex (γTuSC) sub-assemblies, which associate helically to template MT growth. γTuRC assembly provides a key point of regulation for the MT cytoskeleton. Here, we combine crosslinking mass spectrometry, X-ray crystallography, and cryo-EM structures of both monomeric and dimeric γTuSCs, and open and closed helical γTuRC assemblies in complex with Spc110p to elucidate the mechanisms of γTuRC assembly. γTuRC assembly is substantially aided by the evolutionarily conserved CM1 motif in Spc110p spanning a pair of adjacent γTuSCs. By providing the highest resolution and most complete views of any γTuSC assembly, our structures allow phosphorylation sites to be mapped, surprisingly suggesting that they are mostly inhibitory. A comparison of our structures with the CM1 binding site in the human γTuRC structure at the interface between GCP2 and GCP6 allows for the interpretation of significant structural changes arising from CM1 helix binding to metazoan γTuRC.


Assuntos
Antígenos Nucleares/genética , Microtúbulos/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Sítios de Ligação , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Humanos , Espectrometria de Massas/métodos , Centro Organizador dos Microtúbulos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/classificação , Tubulina (Proteína)/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941673

RESUMO

Structural maintenance of chromosomes (SMC) complexes are critical chromatin modulators. In eukaryotes, the cohesin and condensin SMC complexes organize chromatin, while the Smc5/6 complex directly regulates DNA replication and repair. The molecular basis for the distinct functions of Smc5/6 is poorly understood. Here, we report an integrative structural study of the budding yeast Smc5/6 holo-complex using electron microscopy, cross-linking mass spectrometry, and computational modeling. We show that the Smc5/6 complex possesses several unique features, while sharing some architectural characteristics with other SMC complexes. In contrast to arm-folded structures of cohesin and condensin, Smc5 and Smc6 arm regions do not fold back on themselves. Instead, these long filamentous regions interact with subunits uniquely acquired by the Smc5/6 complex, namely the Nse2 SUMO ligase and the Nse5/Nse6 subcomplex, with the latter also serving as a linchpin connecting distal parts of the complex. Our 3.0-Å resolution cryoelectron microscopy structure of the Nse5/Nse6 core further reveals a clasped-hand topology and a dimeric interface important for cell growth. Finally, we provide evidence that Nse5/Nse6 uses its SUMO-binding motifs to contribute to Nse2-mediated sumoylation. Collectively, our integrative study identifies distinct structural features of the Smc5/6 complex and functional cooperation among its coevolved unique subunits.

11.
J Biol Chem ; 296: 100743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33957123

RESUMO

Integrative modeling is an increasingly important tool in structural biology, providing structures by combining data from varied experimental methods and prior information. As a result, molecular architectures of large, heterogeneous, and dynamic systems, such as the ∼52-MDa Nuclear Pore Complex, can be mapped with useful accuracy, precision, and completeness. Key challenges in improving integrative modeling include expanding model representations, increasing the variety of input data and prior information, quantifying a match between input information and a model in a Bayesian fashion, inventing more efficient structural sampling, as well as developing better model validation, analysis, and visualization. In addition, two community-level challenges in integrative modeling are being addressed under the auspices of the Worldwide Protein Data Bank (wwPDB). First, the impact of integrative structures is maximized by PDB-Development, a prototype wwPDB repository for archiving, validating, visualizing, and disseminating integrative structures. Second, the scope of structural biology is expanded by linking the wwPDB resource for integrative structures with archives of data that have not been generally used for structure determination but are increasingly important for computing integrative structures, such as data from various types of mass spectrometry, spectroscopy, optical microscopy, proteomics, and genetics. To address the largest of modeling problems, a type of integrative modeling called metamodeling is being developed; metamodeling combines different types of input models as opposed to different types of data to compute an output model. Collectively, these developments will facilitate the structural biology mindset in cell biology and underpin spatiotemporal mapping of the entire cell.


Assuntos
Biologia Celular/história , Bases de Dados de Proteínas/história , Modelos Moleculares , Biologia Molecular/história , Animais , História do Século XX , História do Século XXI , Humanos
12.
bioRxiv ; 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33851164

RESUMO

Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.

13.
ACS Chem Biol ; 16(4): 712-723, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33765766

RESUMO

Differential expression of extracellular proteases and endogenous protease inhibitors has been associated with distinct molecular subtypes of breast cancer. However, due to the tight post-translational regulation of protease activity, protease expression-level data alone are not sufficient to understand the role of proteases in malignant transformation. Therefore, we hypothesized that global profiles of extracellular protease activity could more completely reflect differences observed at the transcriptional level in breast cancer and that subtype-associated protease activity may be leveraged to identify specific proteases that play a functional role in cancer signaling. Here, we used a global peptide library-based approach to profile the activities of proteases within distinct breast cancer subtypes. Analysis of 3651 total peptide cleavages from a panel of well-characterized breast cancer cell lines demonstrated differences in proteolytic signatures between cell lines. Cell line clustering based on protease cleavages within the peptide library expanded upon the expected classification derived from transcriptional profiling. An isogenic cell line model developed to further interrogate proteolysis in the HER2 subtype revealed a proteolytic signature consistent with activation of TGF-ß signaling. Specifically, we determined that a metalloprotease involved in TGF-ß signaling, BMP1, was upregulated at both the protein (2-fold, P = 0.001) and activity (P = 0.0599) levels. Inhibition of BMP1 and HER2 suppressed invasion of HER2-expressing cells by 35% (P < 0.0001), compared to 15% (P = 0.0086) observed in cells where only HER2 was inhibited. In summary, through global identification of extracellular proteolysis in breast cancer cell lines, we demonstrate subtype-specific differences in protease activity and elucidate proteolysis associated with HER2-mediated signaling.


Assuntos
Neoplasias da Mama/metabolismo , Genes erbB-2 , Peptídeo Hidrolases/metabolismo , Neoplasias da Mama/genética , Transformação Celular Neoplásica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteólise
15.
Structure ; 29(5): 467-478.e6, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33412091

RESUMO

In the non-homologous end-joining (NHEJ) of a DNA double-strand break, DNA ends are bound and protected by DNA-PK, which synapses across the break to tether the broken ends and initiate repair. There is little clarity surrounding the nature of the synaptic complex and the mechanism governing the transition to repair. We report an integrative structure of the synaptic complex at a precision of 13.5 Å, revealing a symmetric head-to-head arrangement with a large offset in the DNA ends and an extensive end-protection mechanism involving a previously uncharacterized plug domain. Hydrogen/deuterium exchange mass spectrometry identifies an allosteric pathway connecting DNA end-binding with the kinase domain that places DNA-PK under tension in the kinase-active state. We present a model for the transition from end-protection to repair, where the synaptic complex supports hierarchical processing of the ends and scaffold assembly, requiring displacement of the catalytic subunit and tension release through kinase activity.


Assuntos
Proteína Quinase Ativada por DNA/química , Complexo Sinaptonêmico/química , Sítios de Ligação , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/metabolismo , Células HeLa , Holoenzimas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Complexo Sinaptonêmico/metabolismo
16.
Nucleic Acids Res ; 49(D1): D437-D451, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211854

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Conformação Proteica , Proteínas/química , Bioengenharia/métodos , Pesquisa Biomédica/métodos , Biotecnologia/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Substâncias Macromoleculares/metabolismo , Pandemias , Proteínas/genética , Proteínas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Software , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Protein Sci ; 30(1): 250-261, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166013

RESUMO

Biology is advanced by producing structural models of biological systems, such as protein complexes. Some systems are recalcitrant to traditional structure determination methods. In such cases, it may still be possible to produce useful models by integrative structure determination that depends on simultaneous use of multiple types of data. An ensemble of models that are sufficiently consistent with the data is produced by a structural sampling method guided by a data-dependent scoring function. The variation in the ensemble of models quantified the uncertainty of the structure, generally resulting from the uncertainty in the input information and actual structural heterogeneity in the samples used to produce the data. Here, we describe how to generate, assess, and interpret ensembles of integrative structural models using our open source Integrative Modeling Platform program (https://integrativemodeling.org).


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Complexos Multiproteicos/química , Software , Estrutura Quaternária de Proteína
18.
Methods Mol Biol ; 2199: 239-255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33125654

RESUMO

Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized at atomic resolution using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. In the following chapter, we present an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of a similar protocol has resulted in models of useful accuracy for domains in more than half of all known protein sequences.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Proteínas/química , Software , Conformação Proteica
19.
Cell ; 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34982960

RESUMO

Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.

20.
Science ; 370(6522)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303586

RESUMO

Determining structures of protein complexes is crucial for understanding cellular functions. Here, we describe an integrative structure determination approach that relies on in vivo measurements of genetic interactions. We construct phenotypic profiles for point mutations crossed against gene deletions or exposed to environmental perturbations, followed by converting similarities between two profiles into an upper bound on the distance between the mutated residues. We determine the structure of the yeast histone H3-H4 complex based on ~500,000 genetic interactions of 350 mutants. We then apply the method to subunits Rpb1-Rpb2 of yeast RNA polymerase II and subunits RpoB-RpoC of bacterial RNA polymerase. The accuracy is comparable to that based on chemical cross-links; using restraints from both genetic interactions and cross-links further improves model accuracy and precision. The approach provides an efficient means to augment integrative structure determination with in vivo observations.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mapas de Interação de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Histonas/química , Histonas/genética , Mutação , Conformação Proteica , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...