Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559742

RESUMO

The reported study was devoted to the investigation of viscoelastic behavior for solid and porous ultra-high molecular weight polyethylene (UHMWPE) under compression. The obtained experimental stress curves were interpreted using a two-term Prony series to represent the superposition of two coexisting activation processes corresponding to long molecular (~160 s) and short structural (~20 s) time scales, respectively, leading to good statistical correlation with the observations. In the case of porous polymer, the internal strain redistribution during relaxation was quantified using digital image correlation (DIC) analysis. The strongly inhomogeneous deformation of the porous polymer was found not to affect the relaxation times. To illustrate the possibility of generalizing the results to three dimensions, X-ray tomography was used to examine the porous structure relaxation at the macro- and micro-scale levels. DIC analysis revealed positive correlation between the applied force and relative density. The apparent stiffness variation for UHMWPE foams with mixed open and closed cells was described using a newly proposed three-term expression. Furthermore, in situ tensile loading and X-ray scattering study was applied for isotropic solid UHMWPE specimens to investigate the evolution of internal structure and orientation during drawing and stress relaxation in another loading mode.

2.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566962

RESUMO

This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor (K1c) were examined. The K1c parameter was obtained using three-point bending tests for specimens with different l/b ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the K1c parameter was drastically reduced from about 5 to 1 MPa·m1/2 and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the K1c values.

3.
Nanomaterials (Basel) ; 12(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35407353

RESUMO

Ga-ion micro-ring-core FIB-DIC evaluation of residual stresses in shot peened VT6 (Ti-6Al-4V) alloy was carried out and cross-validated against other non-destructive and semi-destructive residual stresses evaluation techniques, namely, the conventional sin2ψ X-ray diffraction and mechanical hole drilling. The Korsunsky FIB-DIC method of Ga-ion beam micro-ring-core milling within FIB-SEM with Digital Image Correlation (DIC) deformation analysis delivered spatial resolution down to a few micrometers, while the mechanical drilling of circular holes of ~2 mm diameter with laser speckle interferometry monitoring of strains gave a rough spatial resolution of a few millimeters. Good agreement was also found with the X-ray diffraction estimates of residual stress variation profiles as a function of depth. These results demonstrate that FIB-DIC provides rich information down to the micron scale, it also allows reliable estimation of macro-scale residual stresses.

4.
Phys Chem Chem Phys ; 24(15): 8901-8912, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35363241

RESUMO

Siliceous diatom frustules represent an up-and-coming platform for a range of bio-assisted nanofabrication processes able to overcome the complexity and high cost of current engineering technology solutions in terms of negligibly small power consumption and environmentally friendly processing combined with unique highly porous structures and properties. Herein, the modification of diatomite - a soft, loose, and fine-grained siliceous sedimentary rock composed of the remains of fossilized diatoms - with gold nanoparticles using layer-by-layer technology in combination with a freezing-induced loading approach is demonstrated. The obtained composite structures are characterized by dynamic light scattering, extinction spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), and photoacoustic imaging techniques, and tested as a platform for surface-enhanced Raman scattering (SERS) using Rhodamine 6G. SEM, TEM, and energy dispersive X-ray spectroscopy (EDX) confirmed a dense coating of gold nanoparticles with an average size of 19 nm on the surface of the diatomite and within the pores. The photoacoustic signal excited at a wavelength of 532 nm increases with increasing loading cycles of up to three polyelectrolyte-gold nanoparticle bilayers. The hybrid materials based on diatomite modified with gold nanoparticles can be used as SERS substrates, but also as biosensors, catalysts, and platforms for advanced bioimaging.


Assuntos
Diatomáceas , Nanopartículas Metálicas , Terra de Diatomáceas , Diatomáceas/química , Congelamento , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
5.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335811

RESUMO

Electrospinning is a well-established method for the fabrication of polymer biomaterials, including those with core-shell nanofibers. The variability of structures presents a great range of opportunities in tissue engineering and drug delivery by incorporating biologically active molecules such as drugs, proteins, and growth factors and subsequent control of their release into the target microenvironment to achieve therapeutic effect. The object of study is non-woven core-shell PVA-PEG-SiO2@PVA-GO fiber mats assembled by the technology of coaxial electrospinning. The task of the core-shell fiber development was set to regulate the degradation process under external factors. The dual structure was modified with silica nanoparticles and graphene oxide to ensure the fiber integrity and stability. The influence of the nano additives and crosslinking conditions for the composite was investigated as a function of fiber diameter, hydrolysis, and mechanical properties. Tensile mechanical tests and water degradation tests were used to reveal the fracture and dissolution behavior of the fiber mats and bundles. The obtained fibers were visualized by confocal fluorescence microscopy to confirm the continuous core-shell structure and encapsulation feasibility for biologically active components, selectively in the fiber core and shell. The results provide a firm basis to draw the conclusion that electrospun core-shell fiber mats have tremendous potential for biomedical applications as drug carriers, photocatalysts, and wound dressings.

6.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499359

RESUMO

Carbonized elastomer-based composites (CECs) possess a number of attractive features in terms of thermomechanical and electromechanical performance, durability in aggressive media and facile net-shape formability, but their relatively low ductility and strength limit their suitability for structural engineering applications. Prospective applications such as structural elements of micro-electro-mechanical systems MEMS can be envisaged since smaller principal dimensions reduce the susceptibility of components to residual stress accumulation during carbonization and to brittle fracture in general. We report the results of in situ in-SEM study of microdeformation and fracture behavior of CECs based on nitrile butadiene rubber (NBR) elastomeric matrices filled with carbon and silicon carbide. Nanostructured carbon composite materials were manufactured via compounding of elastomeric substance with carbon and SiC fillers using mixing rolling mill, vulcanization, and low-temperature carbonization. Double-edge notched tensile (DENT) specimens of vulcanized and carbonized elastomeric composites were subjected to in situ tensile testing in the chamber of the scanning electron microscope (SEM) Tescan Vega 3 using a Deben microtest 1 kN tensile stage. The series of acquired SEM images were analyzed by means of digital image correlation (DIC) using Ncorr open-source software to map the spatial distribution of strain. These maps were correlated with finite element modeling (FEM) simulations to refine the values of elastic moduli. Moreover, the elastic moduli were derived from unloading curve nanoindentation hardness measurements carried out using a NanoScan-4D tester and interpreted using the Oliver-Pharr method. Carbonization causes a significant increase of elastic moduli from 0.86 ± 0.07 GPa to 14.12 ± 1.20 GPa for the composite with graphite and carbon black fillers. Nanoindentation measurements yield somewhat lower values, namely, 0.25 ± 0.02 GPa and 9.83 ± 1.10 GPa before and after carbonization, respectively. The analysis of fractography images suggests that crack initiation, growth and propagation may occur both at the notch stress concentrator or relatively far from the notch. Possible causes of such response are discussed, namely, (1) residual stresses introduced by processing; (2) shape and size of fillers; and (3) the emanation and accumulation of gases in composites during carbonization.


Assuntos
Elastômeros/química , Nanocompostos/química , Carbono/química , Compostos Inorgânicos de Carbono/química , Simulação por Computador , Módulo de Elasticidade , Análise de Elementos Finitos , Dureza , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanocompostos/ultraestrutura , Compostos de Silício/química , Estresse Mecânico , Resistência à Tração
7.
RSC Adv ; 11(51): 31884-31922, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35495528

RESUMO

The present article overviews the current state-of-the-art and future prospects for the use of diatomaceous earth (DE) in the continuously expanding sector of energy science and technology. An eco-friendly direct source of silica and the production of silicon, diatomaceous earth possesses a desirable nano- to micro-structure that offers inherent advantages for optimum performance in existing and new applications in electrochemistry, catalysis, optoelectronics, and biomedical engineering. Silica, silicon and silicon-based materials have proven useful for energy harvesting and storage applications. However, they often encounter setbacks to their commercialization due to the limited capability for the production of materials possessing fascinating microstructures to deliver optimum performance. Despite many current research trends focusing on the means to create the required nano- to micro-structures, the high cost and complex, potentially environmentally harmful chemical synthesis techniques remain a considerable challenge. The present review examines the advances made using diatomaceous earth as a source of silica, silicon-based materials and templates for energy related applications. The main synthesis routes aimed at preserving the highly desirable naturally formed neat nanostructure of diatomaceous earth are assessed in this review that culminates with the discussion of recently developed pathways to achieving the best properties. The trend analysis establishes a clear roadmap for diatomaceous earth as a source material of choice for current and future energy applications.

8.
Polymers (Basel) ; 12(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171935

RESUMO

Porous ultra-high molecular weight polyethylene (UHMWPE) is a high-performance bioinert polymer used in cranio-facial reconstructive surgery in procedures where relatively low mechanical stresses arise. As an alternative to much stiffer and more costly polyether-ether-ketone (PEEK) polymer, UHMWPE is finding further wide applications in hierarchically structured hybrids for advanced implants mimicking cartilage, cortical and trabecular bone tissues within a single component. The mechanical behaviour of open-cell UHMWPE sponges obtained through sacrificial desalination of hot compression-moulded UHMWPE-NaCl powder mixtures shows a complex dependence on the fabrication parameters and microstructural features. In particular, similarly to other porous media, it displays significant inhomogeneity of strain that readily localises within deformation bands that govern the overall response. In this article, we report advances in the development of accurate experimental techniques for operando studies of the structure-performance relationship applied to the porous UHMWPE medium with pore sizes of about 250 µm that are most well-suited for live cell proliferation and fast vascularization of implants. Samples of UHMWPE sponges were subjected to in situ compression using a micromechanical testing device within Scanning Electron Microscope (SEM) chamber, allowing the acquisition of high-resolution image sequences for Digital Image Correlation (DIC) analysis. Special masking and image processing algorithms were developed and applied to reveal the evolution of pore size and aspect ratio. Key structural evolution and deformation localisation phenomena were identified at both macro- and micro-structural levels in the elastic and plastic regimes. The motion of pore walls was quantitatively described, and the presence and influence of strain localisation zones were revealed and analysed using DIC technique.

9.
Nanomaterials (Basel) ; 10(4)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218203

RESUMO

Successful direct route production of silicon nanostructures from diatomaceous earth (DE) on a single crystalline silicon wafer via the magnesiothermic reduction reaction is reported. The formed porous coating of 6 µm overall thickness contains silicon as the majority phase along with minor traces of Mg, as evident from SEM-EDS and the Focused Ion Beam (FIB) analysis. Raman peaks of silicon at 519 cm-1 and 925 cm-1 were found in both the film and wafer substrate, and significant intensity variation was observed, consistent with the SEM observation of the directly formed silicon nanoflake layer. Microstructural analysis of the flakes reveals the presence of pores and cavities partially retained from the precursor diatomite powder. A considerable reduction in surface reflectivity was observed for the silicon nanoflakes, from 45% for silicon wafer to below 15%. The results open possibilities for producing nanostructured silicon with a vast range of functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...