Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2002748, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32754923

RESUMO

A series of glycolated polythiophenes for use in organic electrochemical transistors (OECTs) is designed and synthesized, differing in the distribution of their ethylene glycol chains that are tethered to the conjugated backbone. While side chain redistribution does not have a significant impact on the optoelectronic properties of the polymers, this molecular engineering strategy strongly impacts the water uptake achieved in the polymers. By careful optimization of the water uptake in the polymer films, OECTs with unprecedented steady-state performances in terms of [µC* ] and current retentions up to 98% over 700 electrochemical switching cycles are developed.

2.
Nanotechnology ; 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32679577

RESUMO

Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication, and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.

3.
J Am Chem Soc ; 142(25): 11050-11059, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32484344

RESUMO

The integration of photochromic molecules into semiconducting polymer matrices via blending has recently attracted a great deal of attention, as it provides the means to reversibly modulate the output signal of electronic devices by using light as a remote control. However, the structural and electronic interactions between photochromic molecules and semiconducting polymers are far from being fully understood. Here we perform a comparative investigation by combining two photochromic diarylethene moieties possessing similar energy levels yet different propensity to aggregate with five prototypical polymer semiconductors exhibiting different energy levels and structural order, ranging from amorphous to semicrystalline. Our in-depth photochemical, structural, morphological, and electrical characterization reveals that the photoresponsive behavior of thin-film transistors including polymer/diarylethenes blends as the active layer is governed by a complex interplay between the relative position of the energy levels and the polymer matrix microstructure. By matching the energy levels and optimizing the molecular packing, high-performance optically switchable organic thin-film transistors were fabricated. These findings represent a major step forward in the fabrication of light-responsive organic devices.

4.
Nat Mater ; 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541935

RESUMO

Brain-inspired computing paradigms have led to substantial advances in the automation of visual and linguistic tasks by emulating the distributed information processing of biological systems1. The similarity between artificial neural networks (ANNs) and biological systems has inspired ANN implementation in biomedical interfaces including prosthetics2 and brain-machine interfaces3. While promising, these implementations rely on software to run ANN algorithms. Ultimately, it is desirable to build hardware ANNs4,5 that can both directly interface with living tissue and adapt based on biofeedback6,7. The first essential step towards biologically integrated neuromorphic systems is to achieve synaptic conditioning based on biochemical signalling activity. Here, we directly couple an organic neuromorphic device with dopaminergic cells to constitute a biohybrid synapse with neurotransmitter-mediated synaptic plasticity. By mimicking the dopamine recycling machinery of the synaptic cleft, we demonstrate both long-term conditioning and recovery of the synaptic weight, paving the way towards combining artificial neuromorphic systems with biological neural networks.

5.
Langmuir ; 36(26): 7325-7331, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388991

RESUMO

Transmembrane proteins (TMPs) regulate processes occurring at the cell surface and are essential gatekeepers of information flow across the membrane. TMPs are difficult to study, given the complex environment of the membrane and its influence on protein conformation, mobility, biomolecule interaction, and activity. For the first time, we create mammalian biomembranes supported on a transparent, electrically conducting polymer surface, which enables dual electrical and optical monitoring of TMP function in its native membrane environment. Mammalian plasma membrane vesicles containing ATP-gated P2X2 ion channels self-assemble on a biocompatible polymer cushion that transduces the changes in ion flux during ATP exposure. This platform maintains the complexity of the native plasma membrane, the fluidity of its constituents, and protein orientation critical to ion channel function. We demonstrate the dual-modality readout using microscopy to characterize protein mobility by single-particle tracking and sensing of ATP gating of P2X2 using electrical impedance spectroscopy. This measurement of TMP activity important for pain sensing, neurological activity, and sensory activity raises new possibilities for drug screening and biosensing applications.

6.
ACS Nano ; 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32469490

RESUMO

Transmembrane proteins represent a major target for modulating cell activity, both in terms of therapeutics drugs and for pathogen interactions. Work on screening such therapeutics or identifying toxins has been severely limited by the lack of available methods that would give high content information on functionality (ideally multimodal) and that are suitable for high-throughput. Here, we have demonstrated a platform that is capable of multimodal (optical and electronic) screening of ligand gated ion-channel activity in human-derived membranes. The TREK-1 ion-channel was expressed within supported lipid bilayers, formed via vesicle fusion of blebs obtained from the HEK cell line overexpressing TREK-1. The resulting reconstituted native membranes were confirmed via fluorescence recovery after photobleaching to form mobile bilayers on top of films of the polymeric electroactive transducer poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). PEDOT:PSS electrodes were then used for quantitative electrochemical impedance spectroscopy measurements of ligand-mediated TREK-1 interactions with two compounds, spadin and arachidonic acid, known to suppress and activate TREK-1 channels, respectively. PEDOT:PSS-based organic electrochemical transistors were then used for combined optical and electronic measurements of TREK-1 functionality. The technology demonstrated here is highly promising for future high-throughput screening of transmembrane protein modulators owing to the robust nature of the membrane integrated device and the highly quantitative electrical signals obtained. This is in contrast with live-cell-based electrophysiology assays (e.g., patch clamp) which compare poorly in terms of cost, usability, and compatibility with optical transduction.

7.
ACS Nano ; 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32338865

RESUMO

The role of additives in facilitating the growth of conventional semiconducting thin films is well-established. Apparently, their presence is also decisive in the growth of two-dimensional transition metal dichalcogenides (TMDs), yet their role remains ambiguous. In this work, we show that the use of sodium bromide enables synthesis of TMD monolayers via a surfactant-mediated growth mechanism, without introducing liquefaction of metal oxide precursors. We discovered that sodium ions provided by sodium bromide chemically passivate edges of growing molybdenum disulfide crystals, relaxing in-plane strains to suppress 3D islanding and promote monolayer growth. To exploit this growth model, molybdenum disulfide monolayers were directly grown into desired patterns using predeposited sodium bromide as a removable template. The surfactant-mediated growth not only extends the families of metal oxide precursors but also offers a way for lithography-free patterning of TMD monolayers on various surfaces to facilitate fabrication of atomically thin electronic devices.

8.
Nat Mater ; 19(5): 491-502, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32296138

RESUMO

Conjugated polymers and molecular semiconductors are emerging as a viable semiconductor technology in industries such as displays, electronics, renewable energy, sensing and healthcare. A key enabling factor has been significant scientific progress in improving their charge transport properties and carrier mobilities, which has been made possible by a better understanding of the molecular structure-property relationships and the underpinning charge transport physics. Here we aim to present a coherent review of how we understand charge transport in these high-mobility van der Waals bonded semiconductors. Specific questions of interest include estimates for intrinsic limits to the carrier mobilities that might ultimately be achievable; a discussion of the coupling between charge and structural dynamics; the importance of molecular conformations and mesoscale structural features; how the transport physics of conjugated polymers and small molecule semiconductors are related; and how the incorporation of counterions in doped films-as used, for example, in bioelectronics and thermoelectric devices-affects the electronic structure and charge transport properties.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32141283

RESUMO

Perovskite/silicon tandem solar cells are considered as one of the cost-effective solutions for determining high energy conversion efficiencies. Efficient photon management allows improving light incoupling in solar cells by reducing optical losses. The optics relies upon the interface morphology, and consequently, the growth mechanism of the top cell on the bottom cell is crucial for the implementation of efficient perovskite/silicon tandem solar cells. To describe the interface morphologies of perovskite/silicon tandem solar cells, a three-dimensional surface algorithm is used that allows investigating the perovskite solar cells deposited on the textured crystalline silicon solar cells. We distinguish between two extreme cases in which the film grows only in the direction of the substrate normal or in the direction of the local surface normal. The growth mode has significant influence on the film roughness, the effective thickness of the film, the optics of the solar cell, and the photovoltaic parameters. The optics is investigated by finite-differencetime-domain simulations. The influence of the interface morphology on the photovoltaic parameters is discussed, and guidelines are provided to reach high short-circuit current density and energy conversion efficiency.

10.
ACS Nano ; 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32208676

RESUMO

Metal nanocrystals exhibit important optoelectronic and photocatalytic functionalities in response to light. These dynamic energy conversion processes have been commonly studied by transient optical probes to date, but an understanding of the atomistic response following photoexcitation has remained elusive. Here, we use femtosecond resolution electron diffraction to investigate transient lattice responses in optically excited colloidal gold nanocrystals, revealing the effects of nanocrystal size and surface ligands on the electron-phonon coupling and thermal relaxation dynamics. First, we uncover a strong size effect on the electron-phonon coupling, which arises from reduced dielectric screening at the nanocrystal surfaces and prevails independent of the optical excitation mechanism (i.e., inter- and intraband). Second, we find that surface ligands act as a tuning parameter for hot carrier cooling. Particularly, gold nanocrystals with thiol-based ligands show significantly slower carrier cooling as compared to amine-based ligands under intraband optical excitation due to electronic coupling at the nanocrystal/ligand interfaces. Finally, we spatiotemporally resolve thermal transport and heat dissipation in photoexcited nanocrystal films by combining electron diffraction with stroboscopic elastic scattering microscopy. Taken together, we resolve the distinct thermal relaxation time scales ranging from 1 ps to 100 ns associated with the multiple interfaces through which heat flows at the nanoscale. Our findings provide insights into optimization of gold nanocrystals and their thin films for photocatalysis and thermoelectric applications.

11.
Adv Mater ; 32(16): e1908047, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125736

RESUMO

Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side-products. This is particularly important for bioelectronic devices, which are designed to operate in biological systems. While redox-active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side-reactions with molecular oxygen during device operation. Here, electrochemical side reactions with molecular oxygen are shown to occur during organic electrochemical transistor (OECT) operation using high-performance, state-of-the-art OECT materials. Depending on the choice of the active material, such reactions yield hydrogen peroxide (H2 O2 ), a reactive side-product, which may be harmful to the local biological environment and may also accelerate device degradation. A design strategy is reported for the development of redox-active organic semiconductors based on donor-acceptor copolymers that prevents the formation of H2 O2 during device operation. This study elucidates the previously overlooked side-reactions between redox-active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte-gated devices in application-relevant environments.

12.
Adv Mater ; 32(19): e2000270, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32202010

RESUMO

Organic electrochemical transistors (OECTs) show great promise for flexible, low-cost, and low-voltage sensors for aqueous solutions. The majority of OECT devices are made using the polymer blend poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), in which PEDOT is intrinsically doped due to inclusion of PSS. Because of this intrinsic doping, PEDOT:PSS OECTs generally operate in depletion mode, which results in a higher power consumption and limits stability. Here, a straightforward method to de-dope PEDOT:PSS using commercially available amine-based molecular de-dopants to achieve stable enhancement-mode OECTs is presented. The enhancement-mode OECTs show mobilities near that of pristine PEDOT:PSS (≈2 cm2 V-1 s-1 ) with stable operation over 1000 on/off cycles. The electron and proton exchange among PEDOT, PSS, and the molecular de-dopants are characterized to reveal the underlying chemical mechanism of the threshold voltage shift to negative voltages. Finally, the effect of the de-doping on the microstructure of the spin-cast PEDOT:PSS films is investigated.

14.
ACS Nano ; 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32045212

RESUMO

Transition-metal dichalcogenides (TMDs) exist in various crystal structures with semiconducting, semi-metallic, and metallic properties. The dynamic control of these phases is of immediate interest for next-generation electronics such as phase change memories. Of the binary Mo and W-based TMDs, MoTe2 is attractive for electronic applications because it has the lowest energy difference (40 meV) between the semiconducting (2H) and semi-metallic (1T') phases, allowing for MoTe2 phase change by electrostatic doping. Here, we report phase change between the 2H and 1T' polymorphs of MoTe2 in thicknesses ranging from the monolayer to bulk-like case (73 nm) using an ionic liquid electrolyte at room temperature and in air. We find consistent evidence of a partially reversible 2H-1T' transition using in situ Raman spectroscopy where the phase change occurs in the topmost layers of the MoTe2 flake. We find a thickness-dependent transition voltage where higher voltages are necessary to drive the phase change for thicker flakes. We also show evidence of electrochemical activity during the gating process by observation of Te metal formation. This finding suggests the formation of Te vacancies which have been reported to lower the energy difference between the 2H and 1T' phases, potentially aiding the phase change process. Our discovery that the phase change can be achieved on the surface layer of bulk-like materials reveals that this electrochemical mechanism does not require isolation of a single layer and the effect may be more broadly applicable than previously thought.

15.
J Am Chem Soc ; 142(2): 652-664, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31851506

RESUMO

The polymer indacenodithiophene-co-benzothiadiazole (IDT-BT) has been thoroughly studied for its use in p-type organic thin-film transistors over the course of the past decade. While a variety of modifications have been made to its structure, few analogues have been able to match or surpass the hole mobility that can be obtained by IDT-BT. Here, we discuss the rationale behind the chemical modifications that have been utilized and suggest design principles toward high-mobility indacenodithiophene-based polymers. It is clear that planarizing intramolecular interactions, which exist between the peripheral thiophene of the IDT unit and the benzothiadiazole, are imperative for achieving high hole mobilities in this relatively amorphous polymer. Moreover, despite the less ordered backbones of the extended fused-ring cores that have recently been utilized (TIF-BT and TBIDT-BT), high mobilities were still attained in these polymers owing to additional interchain charge transfer. Thus, maintaining the beneficial thiophene-benzothiadiazole intramolecular interactions, while further extending the IDT core to promote interchain charge transfer, is a logical strategy toward high-mobility p-type polymers.

16.
ACS Appl Mater Interfaces ; 12(2): 2615-2624, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31850727

RESUMO

In recent decades, oxide thin-film transistors (TFTs) have attracted a great deal of attention as a promising technology in terms of next-generation electronics due to their outstanding electrical performance. However, achieving robust electrical characteristics under various environments is a crucial challenge for successful realization of oxide-based electronic applications. To resolve the limitation, we propose a highly flexible and reliable heterogeneous organic passivation layer composed of stacked parylene-C and diketopyrrolopyrrole-polymer films for improving stability of oxide TFTs under various environments and mechanical stress. The presented multifunctional heterogeneous organic (MHO) passivation leads to high-performance oxide TFTs by: (1) improving their electrical characteristics, (2) protecting them from external reactive molecules, and (3) blocking light exposure to the oxide layer. As a result, oxide TFTs with MHO passivation exhibit outstanding stability in ambient air as well as under light illumination: the threshold voltage shift of the device is almost 0 V under severe negative bias illumination stress condition (white light of 5700 lx, gate voltage of -20 V, and drain voltage of 10.1 V for 20 000 s). Furthermore, since the MHO passivation layer exhibits high mechanical stability at a bending radius of ≤5 mm and can be deposited at room temperature, this technique is expected to be useful in the fabrication of flexible/wearable devices.

17.
Adv Healthc Mater ; 8(24): e1901321, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31714014

RESUMO

Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off-site diagnosis and patient-monitoring. In particular, sweat-based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4 + ) and calcium (Ca2+ ) ion-selective membranes with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4 + and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene-ethylene-butene-styrene substrate with a laser-patterned microcapillary channel array for direct sweat acquisition and delivery to the ion-selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10-3 and 100 × 10-3 m, well within the physiological levels of NH4 + and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real-time analysis using a wearable sensor assembly.

18.
J Am Chem Soc ; 141(47): 18806-18813, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31613619

RESUMO

A fused donor, thienobenzo[b]indacenodithiophene (TBIDT), was designed and synthesized using a novel acid-promoted cascade ring closure strategy, and then copolymerized with a benzothiadiazole (BT) monomer. The backbone of TBIDT is an expansion of the well-known indacenodithiophene (IDT) unit and was expected to enhance the charge carrier mobility by improving backbone planarity and facilitating short contacts between polymer chains. However, the optimized field-effect transistors demonstrated an average saturation hole mobility of 0.9 cm2 V-1 s-1, lower than the performance of IDT-BT (∼1.5 cm2 V-1 s-1). Mobilities extracted from time-resolved microwave conductivity measurements were consistent with the trend in hole mobilities in organic field-effect transistor devices. Scanning tunneling microscopy measurements and computational modeling illustrated that TBIDT-BT exhibits a less ordered microstructure in comparison to IDT-BT. This reveals that a regular side-chain packing density, independent of conformational isomers, is critical to avoid local free volume due to irregular packing, which can host trapping impurities. DFT calculations indicated that TBIDT-BT, despite containing a larger, planar unit, showed less stabilization of planar backbone geometries in comparison to IDT-BT. This is due to the reduced electrostatic stabilizing interactions between the peripheral thiophene of the fused core and the BT unit, resulting in a reduction of the barrier to rotation around the single bond. These insights provide a greater understanding of the general structure-property relationships required for semiconducting polymer repeat units to ensure optimal backbone planarization, as illustrated with IDT-type units, guiding the design of novel semiconducting polymers with extended fused backbones for high-performance field-effect transistors.

19.
J Phys Chem C Nanomater Interfaces ; 123(39): 24328-24337, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31602285

RESUMO

Poly(3,4-ethylenedioxythiophene) blended with polystyrenesulfonate and poly(styrenesulfonic acid), PEDOT:PSS, has found widespread use in organic electronics. Although PEDOT:PSS is commonly used in its doped electrically conducting state, the ability to efficiently convert PEDOT:PSS to its undoped nonconducting state is of interest for a wide variety of applications ranging from biosensors to organic neuromorphic devices. Exposure to aliphatic monoamines, acting as an electron donor and Brønsted-Lowry base, has been reported to be partly successful, but monoamines are unable to fully dedope PEDOT:PSS. Remarkably, some-but not all-polyamines can dedope PEDOT:PSS very efficiently to very low conductivity levels, but the exact chemical mechanism involved is not understood. Here, we study the dedoping efficacy of 21 different aliphatic amines. We identify the presence of two or more primary amines, which can participate in an intramolecular reaction, as the key structural motif that endows polyamines with high PEDOT:PSS dedoping strength. A multistep reaction mechanism, involving sequential electron transfer and deprotonation steps, is proposed that consistently explains the experimental results. Finally, we provide a simple method to convert the commonly used aqueous PEDOT:PSS dispersion into a precursor formulation that forms fully dedoped PEDOT:PSS films after spin coating and subsequent thermal annealing.

20.
Nat Mater ; 18(8): 860-865, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31160799

RESUMO

The properties of organic solids depend on their structure and morphology, yet direct imaging using conventional electron microscopy methods is hampered by the complex internal structure of these materials and their sensitivity to electron beams. Here, we manage to observe the nanocrystalline structure of two organic molecular thin-film systems using transmission electron microscopy by employing a scanning nanodiffraction method that allows for full access to reciprocal space over the size of a spatially localized probe (~2 nm). The morphologies revealed by this technique vary from grains with pronounced segmentation of the structure-characterized by sharp grain boundaries and overlapping domains-to liquid-crystal structures with crystalline orientations varying smoothly over all possible rotations that contain disclinations representing singularities in the director field. The results show how structure-property relationships can be visualized in organic systems using techniques previously only available for hard materials such as metals and ceramics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA