Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617285

RESUMO

The formation of Casparian strips (CS) and the deposition of suberin at the endodermis of plant roots are thought to limit the apoplastic transport of water and ions. We investigated the specific role of each of these apoplastic barriers in the control of hydro-mineral transport by roots and the consequences on shoot growth. A collection of Arabidopsis thaliana mutants defective in suberin deposition and/or CS development was characterized under standard conditions using a hydroponic system and the Phenopsis platform. Mutants altered in suberin deposition had enhanced root hydraulic conductivity, indicating a restrictive role for this compound in water transport. In contrast, defective CS directly increased solute leakage and indirectly reduced root hydraulic conductivity. Defective CS also led to a reduction in rosette growth, which was partly dependent on the hydro-mineral status of the plant. Ectopic suberin was shown to partially compensate for defective CS phenotypes. Altogether, our work shows that the functionality of the root apoplastic diffusion barriers greatly influences the plant physiology, and that their integrity is tightly surveyed.

2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34551972

RESUMO

Suberin is a hydrophobic biopolymer that can be deposited at the periphery of cells, forming protective barriers against biotic and abiotic stress. In roots, suberin forms lamellae at the periphery of endodermal cells where it plays crucial roles in the control of water and mineral transport. Suberin formation is highly regulated by developmental and environmental cues. However, the mechanisms controlling its spatiotemporal regulation are poorly understood. Here, we show that endodermal suberin is regulated independently by developmental and exogenous signals to fine-tune suberin deposition in roots. We found a set of four MYB transcription factors (MYB41, MYB53, MYB92, and MYB93), each of which is individually regulated by these two signals and is sufficient to promote endodermal suberin. Mutation of these four transcription factors simultaneously through genome editing leads to a dramatic reduction in suberin formation in response to both developmental and environmental signals. Most suberin mutants analyzed at physiological levels are also affected in another endodermal barrier made of lignin (Casparian strips) through a compensatory mechanism. Through the functional analysis of these four MYBs, we generated plants allowing unbiased investigation of endodermal suberin function, without accounting for confounding effects due to Casparian strip defects, and were able to unravel specific roles of suberin in nutrient homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Lipídeos/fisiologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Proto-Oncogênicas c-myb/genética , Fatores de Transcrição/genética
3.
Plant J ; 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559918

RESUMO

Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles. The four ZIP proteins can restore the growth defect of a yeast Zn uptake mutant and are upregulated under Zn deficiency. Single and double mutants show no phenotypes under Zn-sufficient or Zn-limited growth conditions. In contrast, triple and quadruple mutants show impaired growth irrespective of external Zn supply due to reduced Zn translocation from root to shoot. All four ZIP genes are highly expressed during seed development, and siliques from all single and higher-order mutants exhibited an increased number of abnormal seeds and decreased Zn levels in mature seeds relative to wild type. The seed phenotypes could be reversed by supplementing the soil with Zn. Our data demonstrate that IRT3, ZIP4, ZIP6, and ZIP9 function redundantly in maintaining Zn homeostasis and seed development in A. thaliana.

4.
Nat Commun ; 12(1): 4979, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404804

RESUMO

Relative contributions of pre-existing vs de novo genomic variation to adaptation are poorly understood, especially in polyploid organisms. We assess this in high resolution using autotetraploid Arabidopsis arenosa, which repeatedly adapted to toxic serpentine soils that exhibit skewed elemental profiles. Leveraging a fivefold replicated serpentine invasion, we assess selection on SNPs and structural variants (TEs) in 78 resequenced individuals and discover significant parallelism in candidate genes involved in ion homeostasis. We further model parallel selection and infer repeated sweeps on a shared pool of variants in nearly all these loci, supporting theoretical expectations. A single striking exception is represented by TWO PORE CHANNEL 1, which exhibits convergent evolution from independent de novo mutations at an identical, otherwise conserved site at the calcium channel selectivity gate. Taken together, this suggests that polyploid populations can rapidly adapt to environmental extremes, calling on both pre-existing variation and novel polymorphisms.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Genoma de Planta , Poliploidia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , Alcaloides de Triptamina e Secologanina/metabolismo , Solo/química
5.
Nat Commun ; 12(1): 4682, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344886

RESUMO

A key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelling, can achieve this goal - monitoring hydrodynamics within living root tissues at cell- and sub-second-scale resolutions. Raman imaging of water-transporting xylem vessels in Arabidopsis thaliana mutant roots reveals faster xylem water transport in endodermal diffusion barrier mutants. Furthermore, transverse line scans across the root suggest water transported via the root xylem does not re-enter outer root tissues nor the surrounding soil when en-route to shoot tissues if endodermal diffusion barriers are intact, thereby separating 'two water worlds'.


Assuntos
Raízes de Plantas/metabolismo , Água/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Hidrodinâmica , Modelos Biológicos , Mutação , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Brotos de Planta/metabolismo , Estômatos de Plantas/metabolismo , Análise Espectral Raman , Xilema/metabolismo
6.
New Phytol ; 232(1): 208-220, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34153129

RESUMO

Local adaptation in coastal areas is driven chiefly by tolerance to salinity stress. To survive high salinity, plants have evolved mechanisms to specifically tolerate sodium. However, the pathways that mediate adaptive changes in these conditions reach well beyond Na+ . Here we perform a high-resolution genetic, ionomic, and functional study of the natural variation in Molybdenum transporter 1 (MOT1) associated with coastal Arabidopsis thaliana accessions. We quantify the fitness benefits of a specific deletion-harbouring allele (MOT1DEL ) present in coastal habitats that is associated with lower transcript expression and molybdenum accumulation. Analysis of the leaf ionome revealed that MOT1DEL plants accumulate more copper (Cu) and less sodium (Na+ ) than plants with the noncoastal MOT1 allele, revealing a complex interdependence in homeostasis of these three elements. Our results indicate that under salinity stress, reduced MOT1 function limits leaf Na+ accumulation through abscisic acid (ABA) signalling. Enhanced ABA biosynthesis requires Cu. This demand is met in Cu deficient coastal soils through MOT1DEL increasing the expression of SPL7 and the copper transport protein COPT6. MOT1DEL is able to deliver a pleiotropic suite of phenotypes that enhance salinity tolerance in coastal soils deficient in Cu. This is achieved by inducing ABA biosynthesis and promoting reduced uptake or better compartmentalization of Na+ , leading to coastal adaptation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Hormônios , Plantas Geneticamente Modificadas/metabolismo , Solo , Estresse Fisiológico/genética , Fatores de Transcrição
7.
Plant Physiol ; 186(3): 1616-1631, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831190

RESUMO

Magnesium (Mg) and calcium (Ca) are essential mineral nutrients poorly supplied in many human food systems. In grazing livestock, Mg and Ca deficiencies are costly welfare issues. Here, we report a Brassica rapa loss-of-function schengen3 (sgn3) mutant, braA.sgn3.a-1, which accumulates twice as much Mg and a third more Ca in its leaves. We mapped braA.sgn3.a to a single recessive locus using a forward ionomic screen of chemically mutagenized lines with subsequent backcrossing and linked-read sequencing of second back-crossed, second filial generation (BC2F2) segregants. Confocal imaging revealed a disrupted root endodermal diffusion barrier, consistent with SGN3 encoding a receptor-like kinase required for normal formation of Casparian strips, as reported in thale cress (Arabidopsis thaliana). Analysis of the spatial distribution of elements showed elevated extracellular Mg concentrations in leaves of braA.sgn3.a-1, hypothesized to result from preferential export of excessive Mg from cells to ensure suitable cellular concentrations. This work confirms a conserved role of SGN3 in controlling nutrient homeostasis in B. rapa, and reveals mechanisms by which plants are able to deal with perturbed shoot element concentrations resulting from a "leaky" root endodermal barrier. Characterization of variation in leaf Mg and Ca accumulation across a mutagenized population of B. rapa shows promise for using such populations in breeding programs to increase edible concentrations of essential human and animal nutrients.

8.
Nat Commun ; 12(1): 2320, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875659

RESUMO

Lignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Lignina/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Parede Celular/genética , Difusão , Lignina/química , Microscopia de Fluorescência/métodos , Mutação , Fenilpropionatos/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , RNA-Seq/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/genética , Xilema/metabolismo
9.
Sci Rep ; 11(1): 5278, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674630

RESUMO

Zinc (Zn) is a key micronutrient for plants and animals, and understanding Zn homeostasis in plants can improve both agriculture and human health. While root Zn transporters in plant model species have been characterized in detail, comparatively little is known about shoot processes controlling Zn concentrations and spatial distribution. Previous work showed that Zn hyperaccumulator species such as Arabidopsis halleri accumulate Zn and other metals in leaf trichomes. To date there is no systematic study regarding Zn accumulation in the trichomes of the non-accumulating, genetic model species A. thaliana. Here, we used Synchrotron X-Ray Fluorescence mapping to show that Zn accumulates at the base of trichomes of A. thaliana. Using transgenic and natural accessions of A thaliana that vary in bulk leaf Zn concentration, we demonstrate that higher leaf Zn increases total Zn found at the base of trichome cells. Our data indicates that Zn accumulation in trichomes is a function of the Zn status of the plant, and provides the basis for future studies on a genetically tractable plant species to understand the molecular steps involved in Zn spatial distribution in leaves.

10.
Plant J ; 106(2): 536-554, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33506585

RESUMO

Soil is a heterogeneous reservoir of essential elements needed for plant growth and development. Plants have evolved mechanisms to balance their nutritional needs based on availability of nutrients. This has led to genetically based variation in the elemental composition, the 'ionome', of plants, both within and between species. We explore this natural variation using a panel of wild-collected, geographically widespread Arabidopsis thaliana accessions from the 1001 Genomes Project including over 1,135 accessions, and the 19 parental accessions of the Multi-parent Advanced Generation Inter-Cross (MAGIC) panel, all with full-genome sequences available. We present an experimental design pipeline for high-throughput ionomic screenings and analyses with improved normalisation procedures to account for errors and variability in conditions often encountered in large-scale, high-throughput data collection. We report quantification of the complete leaf and seed ionome of the entire collection using this pipeline and a digital tool, Ion Explorer, to interact with the dataset. We describe the pattern of natural ionomic variation across the A. thaliana species and identify several accessions with extreme ionomic profiles. It forms a valuable resource for exploratory genetic mapping studies to identify genes underlying natural variation in leaf and seed ionome and genetic adaptation of plants to soil conditions.


Assuntos
Arabidopsis/metabolismo , Nutrientes/metabolismo , Folhas de Planta/metabolismo , Sementes/metabolismo , Oligoelementos/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/fisiologia , Variação Genética/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Nutrientes/análise , Folhas de Planta/química , Folhas de Planta/fisiologia , Análise de Componente Principal , Sementes/química , Sementes/fisiologia , Solo , Oligoelementos/análise
11.
Science ; 371(6525)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33214288

RESUMO

Plant roots and animal guts have evolved specialized cell layers to control mineral nutrient homeostasis. These layers must tolerate the resident microbiota while keeping homeostatic integrity. Whether and how the root diffusion barriers in the endodermis, which are critical for the mineral nutrient balance of plants, coordinate with the microbiota is unknown. We demonstrate that genes controlling endodermal function in the model plant Arabidopsis thaliana contribute to the plant microbiome assembly. We characterized a regulatory mechanism of endodermal differentiation driven by the microbiota with profound effects on nutrient homeostasis. Furthermore, we demonstrate that this mechanism is linked to the microbiota's capacity to repress responses to the phytohormone abscisic acid in the root. Our findings establish the endodermis as a regulatory hub coordinating microbiota assembly and homeostatic mechanisms.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Microbiota/fisiologia , Minerais/metabolismo , Nutrientes/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Arabidopsis/genética , Difusão , Regulação da Expressão Gênica de Plantas , Homeostase , Lipídeos/biossíntese , Raízes de Plantas/genética , Estresse Fisiológico
12.
Heredity (Edinb) ; 126(3): 505-520, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33235293

RESUMO

Manganese (Mn) is an essential trace element for plants and commonly contributes to human health; however, the understanding of the genes controlling natural variation in Mn in crop plants is limited. Here, the integration of two of genome-wide association study approaches was used to increase the identification of valuable quantitative trait loci (QTL) and candidate genes responsible for the concentration of grain Mn across 389 diverse rice cultivars grown in Arkansas and Texas, USA, in multiple years. Single-trait analysis was initially performed using three different SNP datasets. As a result, significant loci could be detected using the high-density SNP dataset. Based on the 5.2 M SNP dataset, major QTLs were located on chromosomes 3 and 7 for Mn containing six candidate genes. In addition, the phenotypic data of grain Mn concentration were combined from three flooded-field experiments from the two sites and 3 years using multi-experiment analysis based on the 5.2 M SNP dataset. Two previous QTLs on chromosome 3 were identified across experiments, whereas new Mn QTLs were identified that were not found in individual experiments, on chromosomes 3, 4, 9 and 11. OsMTP8.1 was identified in both approaches and is a good candidate gene that could be controlling grain Mn concentration. This work demonstrates the utilisation of multi-experiment analysis to identify constitutive QTLs and candidate genes associated with the grain Mn concentration. Hence, the approach should be advantageous to facilitate genomic breeding programmes in rice and other crops considering QTLs and genes associated with complex traits in natural populations.

13.
J Exp Bot ; 72(2): 415-425, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33038235

RESUMO

High Arsenic Concentration 1 (HAC1), an Arabidopsis thaliana arsenate reductase, plays a key role in arsenate [As(V)] tolerance. Through conversion of As(V) to arsenite [As(III)], HAC1 enables As(III) export from roots, and restricts translocation of As(V) to shoots. To probe the ability of different root tissues to detoxify As(III) produced by HAC1, we generated A. thaliana lines expressing HAC1 in different cell types. We investigated the As(V) tolerance phenotypes: root growth, As(III) efflux, As translocation, and As chemical speciation. We showed that HAC1 can function in the outer tissues of the root (epidermis, cortex, and endodermis) to confer As(V) tolerance, As(III) efflux, and limit As accumulation in shoots. HAC1 is less effective in the stele at conferring As(V) tolerance phenotypes. The exception is HAC1 activity in the protoxylem, which we found to be sufficient to restrict As translocation, but not to confer As(V) tolerance. In conclusion, we describe cell type-specific functions of HAC1 that spatially separate the control of As(V) tolerance and As translocation. Further, we identify a key function of protoxylem cells in As(V) translocation, consistent with the model where endodermal passage cells, above protoxylem pericycle cells, form a 'funnel' loading nutrients and potentially toxic elements into the vasculature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arsênio , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Redutases , Arseniatos , Raízes de Plantas/genética , Brotos de Planta
14.
Curr Biol ; 30(20): 4103-4111.e6, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32857976

RESUMO

Casparian strips (CSs) are cell wall modifications of vascular plants restricting extracellular free diffusion into and out of the vascular system [1]. This barrier plays a critical role in controlling the acquisition of nutrients and water necessary for normal plant development [2-5]. CSs are formed by the precise deposition of a band of lignin approximately 2 µm wide and 150 nm thick spanning the apoplastic space between adjacent endodermal cells [6, 7]. Here, we identified a copper-containing protein, Uclacyanin1 (UCC1), that is sub-compartmentalized within the CS. UCC1 forms a central CS nanodomain in comparison with other CS-located proteins that are found to be mainly accumulated at the periphery of the CS. We found that loss-of-function of two uclacyanins (UCC1 and UCC2) reduces lignification specifically in this central CS nanodomain, revealing a nano-compartmentalized machinery for lignin polymerization. This loss of lignification leads to increased endodermal permeability and, consequently, to a loss of mineral nutrient homeostasis.

15.
Commun Biol ; 3(1): 258, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444849

RESUMO

During plant growth, sodium (Na+) in the soil is transported via the xylem from the root to the shoot. While excess Na+ is toxic to most plants, non-toxic concentrations have been shown to improve crop yields under certain conditions, such as when soil K+ is low. We quantified grain Na+ across a barley genome-wide association study panel grown under non-saline conditions and identified variants of a Class 1 HIGH-AFFINITY-POTASSIUM-TRANSPORTER (HvHKT1;5)-encoding gene responsible for Na+ content variation under these conditions. A leucine to proline substitution at position 189 (L189P) in HvHKT1;5 disturbs its characteristic plasma membrane localisation and disrupts Na+ transport. Under low and moderate soil Na+, genotypes containing HvHKT1:5P189 accumulate high concentrations of Na+ but exhibit no evidence of toxicity. As the frequency of HvHKT1:5P189 increases significantly in cultivated European germplasm, we cautiously speculate that this non-functional variant may enhance yield potential in non-saline environments, possibly by offsetting limitations of low available K+.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Sódio/metabolismo , Proteínas de Transporte de Cátions/genética , Estudo de Associação Genômica Ampla , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento
16.
New Phytol ; 226(3): 838-850, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31879959

RESUMO

How cadmium (Cd) tolerance in rice is regulated remains poorly understood. We used a forward genetic approach to investigate Cd tolerance in rice. Using a root elongation assay, we isolated a rice mutant with enhanced Cd tolerance, cadt1, from an ethyl methanesulphonate (EMS)-mutagenized population of a widely grown Indica cultivar. The mutant accumulated more Cd in roots but not in shoots and grains. Using genomic resequencing and complementation, we identified OsCADT1 as the causal gene for the mutant phenotype, which encodes a putative serine hydroxymethyltransferase. OsCADT1 protein was localized to the nucleus and the OsCADT1 gene was expressed in both roots and shoots. OsCADT1 mutation resulted in higher sulphur and selenium accumulation in the shoots and grains. Selenate influx in cadt1 was 2.4 times that of the wild-type. The mutant showed higher expression of the sulphate/selenate transporter gene OsSULTR1;1 and the sulphur-deficiency-inducible gene OsSDI1. Thiol compounds including cysteine, glutathione and phytochelatins were significantly increased in the mutant, underlying its increased Cd tolerance. Growth and grain biomass were little affected. The results suggest that OsCADT1 acts as a negative regulator of sulphate/selenate uptake and assimilation. OsCADT1 mutation increases Cd tolerance and enriches selenium in rice grains, providing a novel solution for selenium biofortification.


Assuntos
Oryza , Selênio , Cádmio/toxicidade , Mutação/genética , Oryza/genética , Fitoquelatinas , Raízes de Plantas/genética
17.
Sci Rep ; 9(1): 19482, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862901

RESUMO

In roots of Arabidopsis thaliana, Zn can be either loaded into the xylem for translocation to the shoot or stored in vacuoles. Vacuolar storage is achieved through the action of the Zn/Cd transporter HMA3 (Heavy Metal Atpase 3). The Col-0 accession has an HMA3 loss-of-function allele resulting in high shoot Cd, when compared to accession CSHL-5 which has a functional allele and low shoot Cd. Interestingly, both Col-0 and CSHL-5 have similar shoot Zn concentrations. We hypothesize that plants sense changes in cytosolic Zn that are due to variation in HMA3 function, and respond by altering expression of genes related to Zn uptake, transport and compartmentalisation, in order to maintain Zn homeostasis. The expression level of genes known to be involved in Zn homeostasis were quantified in both wild-type Col-0 and Col-0::HMA3CSHL-5 plants transformed with the functional CSHL-5 allele of HMA3. We observed significant positive correlations between expression of HMA3 and of genes known to be involved in Zn homeostasis, including ZIP3, ZIP4, MTP1, and bZIP19. The results support our hypothesis that alteration in the level of function of HMA3 is counterbalanced by the fine regulation of the Zn homeostasis gene network in roots of A. thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Variação Genética/genética , Variação Genética/fisiologia , Zinco/metabolismo
18.
J Exp Bot ; 70(20): 5865-5878, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31367770

RESUMO

Brassica rapa includes several important leafy vegetable crops with the potential for high cadmium (Cd) accumulation, posing a risk to human health. This study aims to understand the genetic basis underlying the variation in Cd accumulation among B. rapa vegetables. Cd uptake and translocation in 64 B. rapa accessions were compared. The role of the heavy metal ATPase gene BrHMA3 in the variation of Cd accumulation was investigated. BrHMA3 encodes a tonoplast-localized Cd transporter. Five full-length and four truncated haplotypes of the BrHMA3 coding sequence were identified, explaining >80% of the variation in the Cd root to shoot translocation among the 64 accessions and in F2 progeny. Truncated BrHMA3 haplotypes had a 2.3 and 9.3 times higher shoot Cd concentration and Cd translocation ratio, respectively, than full-length haplotypes. When expressed in yeast and Arabidopsis thaliana, full-length BrHMA3 showed activity consistent with a Cd transport function, whereas truncated BrHMA3 did not. Variation in the BrHMA3 promoter sequence had little effect on Cd translocation. Variation in the BrHMA3 coding sequence is a key determinant of Cd translocation to and accumulation in the leaves of B. rapa. Strong alleles of BrHMA3 can be used to breed for B. rapa vegetables that are low in Cd in their edible portions.


Assuntos
Brassica rapa/metabolismo , Cádmio/metabolismo , Proteínas de Plantas/metabolismo , Brassica rapa/genética , Metais Pesados/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Poluentes do Solo/metabolismo
19.
Plant Physiol ; 181(2): 729-742, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399491

RESUMO

Manganese (Mn) deficiency affects various processes in plant shoots. However, the functions of Mn in roots and the processes involved in root adaptation to Mn deficiency are largely unresolved. Here, we show that the suberization of endodermal cells in barley (Hordeum vulgare) roots is altered in response to Mn deficiency, and that the intensity of Mn deficiency ultimately determines whether suberization increases or decreases. Mild Mn deficiency increased the length of the unsuberized zone close to the root tip, and increased the distance from the root tip at which the fully suberized zone developed. By contrast, strong Mn deficiency increased suberization closer to the root tip. Upon Mn resupply, suberization was identical to that seen on Mn-replete plants. Bioimaging and xylem sap analyses suggest that the reduced suberization in mildly Mn-deficient plants promotes radial Mn transport across the endodermis at a greater distance from the root tip. Less suberin also favors the inwards radial transport of calcium and sodium, but negatively affects the potassium concentration in the stele. During strong Mn deficiency, Mn uptake was directed toward the root tip. Enhanced suberization provides a mechanism to prevent absorbed Mn from leaking out of the stele. With more suberin, the inward radial transport of calcium and sodium decreases, whereas that of potassium increases. We conclude that changes in suberization in response to the intensity of Mn deficiency have a strong effect on root ion homeostasis and ion translocation.


Assuntos
Hordeum/metabolismo , Lipídeos , Manganês/metabolismo , Raízes de Plantas/metabolismo , Homeostase , Hordeum/crescimento & desenvolvimento , Íons/metabolismo , Espectrometria de Massas/métodos
20.
Curr Biol ; 29(10): 1625-1633.e3, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31080078

RESUMO

Arsenic is a carcinogenic contaminant of water and food and a growing threat to human health in many regions of the world. This study focuses on the fern Pteris vittata (Pteridaceae), which is extraordinary in its ability to tolerate and hyperaccumulate very high levels of arsenic that would kill any other plant or animal outside the Pteridaceae. Here, we use RNA-seq to identify three genes (GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (PvGAPC1), ORGANIC CATION TRANSPORTER 4 (PvOCT4), and GLUTATHIONE S-TRANSFERASE (PvGSTF1) that are highly upregulated by arsenic and are necessary for arsenic tolerance, as demonstrated by RNAi. The proteins encoded by these genes have unexpected properties: PvGAPC1 has an unusual active site and a much greater affinity for arsenate than phosphate; PvGSTF1 has arsenate reductase activity; and PvOCT4 localizes as puncta in the cytoplasm. Surprisingly, PvGAPC1, PvGSTF1, and arsenate localize in a similar pattern. These results are consistent with a model that describes the fate of arsenate once it enters the cell. It involves the conversion of arsenate into 1-arseno-3-phosphoglycerate by PvGAPC1. This "chemically trapped" arsenate is pumped into specific arsenic metabolizing vesicles by the PvOCT4 protein. Once inside these vesicles, 1-arseno-3-phosphoglycerate hydrolyses to release arsenate, which is then reduced by PvGSTF1 to arsenite, the form of arsenic stored in the vacuoles of this fern. This mechanism is strikingly similar to one recently described Pseudomonas aeruginosa, whose tolerance to arsenic also involves the biosynthesis and transport of 1-arseno-3-phosphoglycerate, indicating that P. vittata has evolved a simple, bacterial-like mechanism for arsenic tolerance.


Assuntos
Arsênio/metabolismo , Gleiquênias/genética , Proteínas de Plantas/genética , Gleiquênias/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...