Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Oxid Med Cell Longev ; 2019: 3904905, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379988

RESUMO

Coenzyme Q (CoQ), a redox-active lipid, is comprised of a quinone group and a polyisoprenoid tail. It is an electron carrier in the mitochondrial respiratory chain, a cofactor of other mitochondrial dehydrogenases, and an essential antioxidant. CoQ requires a large set of enzymes for its biosynthesis; mutations in genes encoding these proteins cause primary CoQ deficiency, a clinically and genetically heterogeneous group of diseases. Patients with CoQ deficiency often respond to oral CoQ10 supplementation. Treatment is however problematic because of the low bioavailability of CoQ10 and the poor tissue delivery. In recent years, bypass therapy using analogues of the precursor of the aromatic ring of CoQ has been proposed as a promising alternative. We have previously shown using a yeast model that vanillic acid (VA) can bypass mutations of COQ6, a monooxygenase required for the hydroxylation of the C5 carbon of the ring. In this work, we have generated a human cell line lacking functional COQ6 using CRISPR/Cas9 technology. We show that these cells cannot synthesize CoQ and display severe ATP deficiency. Treatment with VA can recover CoQ biosynthesis and ATP production. Moreover, these cells display increased ROS production, which is only partially corrected by exogenous CoQ, while VA restores ROS to normal levels. Furthermore, we show that these cells accumulate 3-decaprenyl-1,4-benzoquinone, suggesting that in mammals, the decarboxylation and C1 hydroxylation reactions occur before or independently of the C5 hydroxylation. Finally, we show that COQ6 isoform c (transcript NM_182480) does not encode an active enzyme. VA can be produced in the liver by the oxidation of vanillin, a nontoxic compound commonly used as a food additive, and crosses the blood-brain barrier. These characteristics make it a promising compound for the treatment of patients with CoQ deficiency due to COQ6 mutations.

3.
Nat Commun ; 10(1): 2576, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189900

RESUMO

Mitochondrial quality control is essential in highly structured cells such as neurons and muscles. In skeletal muscle the mitochondrial fission proteins are reduced in different physiopathological conditions including ageing sarcopenia, cancer cachexia and chemotherapy-induced muscle wasting. However, whether mitochondrial fission is essential for muscle homeostasis is still unclear. Here we show that muscle-specific loss of the pro-fission dynamin related protein (DRP) 1 induces muscle wasting and weakness. Constitutive Drp1 ablation in muscles reduces growth and causes animal death while inducible deletion results in atrophy and degeneration. Drp1 deficient mitochondria are morphologically bigger and functionally abnormal. The dysfunctional mitochondria signals to the nucleus to induce the ubiquitin-proteasome system and an Unfolded Protein Response while the change of mitochondrial volume results in an increase of mitochondrial Ca2+ uptake and myofiber death. Our findings reveal that morphology of mitochondrial network is critical for several biological processes that control nuclear programs and Ca2+ handling.


Assuntos
Dinaminas/metabolismo , Mitocôndrias Musculares/patologia , Dinâmica Mitocondrial/fisiologia , Miopatias Mitocondriais/patologia , Músculo Esquelético/patologia , Animais , Cálcio/metabolismo , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Dinaminas/genética , Homeostase/fisiologia , Humanos , Camundongos , Camundongos Knockout , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/mortalidade , Músculo Esquelético/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
4.
Sci Rep ; 9(1): 6553, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024065

RESUMO

Coenzyme Q10 (CoQ10) deficiencies are a group of heterogeneous conditions that respond to ubiquinone administration if treated soon after the onset of symptoms. However, this treatment is only partially effective due to its poor bioavailability. We tested whether vitamin K2, which was reported to act as a mitochondrial electron carrier in D. melanogaster, could mimic ubiquinone function in human CoQ10 deficient cell lines, and in yeast carrying mutations in genes required for coenzyme Q6 (CoQ6) biosynthesis. We found that vitamin K2, despite entering into mitochondria, restored neither electron flow in the respiratory chain, nor ATP synthesis. Conversely, coenzyme Q4 (CoQ4), an analog of CoQ10 with a shorter isoprenoid side chain, could efficiently substitute its function. Given its better solubility, CoQ4 could represent an alternative to CoQ10 in patients with both primary and secondary CoQ10 deficiencies.

5.
Neurology ; 92(19): e2273-e2285, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30979860

RESUMO

OBJECTIVE: To compare the clinical features of patients showing a classical phenotype of facioscapulohumeral muscular dystrophy (FSHD) with genetic and epigenetic characteristics of the FSHD1 and FSHD2 loci D4Z4 and SMCHD1. METHODS: This is a national multicenter cohort study. We measured motor strength, motor function, and disease severity by manual muscle testing sumscore, Brooke and Vignos scores, clinical severity score (CSS), and age-corrected CSS, respectively. We correlated these scores with genetic (D4Z4 repeat size and haplotype; SMCHD1 variant status) and epigenetic (D4Z4 methylation) parameters. RESULTS: We included 103 patients: 54 men and 49 women. Among them, we identified 64 patients with FSHD1 and 20 patients with FSHD2. Seven patients had genetic and epigenetic characteristics of FSHD1 and FSHD2, all carrying repeats of 9-10 D4Z4 repeat units (RU) and a pathogenic SMCHD1 variant. In the remaining patients, FSHD was genetically excluded or remained unconfirmed. All clinically affected SMCHD1 mutation carriers had a D4Z4 repeat of 9-16 RU on a disease permissive 4qA haplotype. These patients are significantly more severely affected by all clinical scales when compared to patients with FSHD1 with upper-sized FSHD1 alleles (8-10 RU). CONCLUSION: The overlap between FSHD1 and FSHD2 patients in the 9-10 D4Z4 RU range suggests that FSHD1 and FSHD2 form a disease continuum. The previously established repeat size threshold for FSHD1 (1-10 RU) and FSHD2 (11-20 RU) needs to be reconsidered. CLINICALTRIALSGOV IDENTIFIER: NCT01970735.

6.
Mol Genet Genomic Med ; 7(5): e616, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843352

RESUMO

BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition caused by inactivating mutations of the NF1 gene. The wide allelic heterogeneity of this condition, with more than 3,000 pathogenic variants reported so far, is paralleled by its high clinical variability, which is observed even within the same family. The definition of genotype-phenotype correlations has been hampered by the complexity of the NF1 gene and, although a few exceptions have been recognized, the clinical course remains unpredictable in most patients. METHODS: Sequencing of NF1 in patients with cafè-au-lait spots identified the c.3112A>G variant. RNA analysis and a minigene assay were employed to investigate splicing. RESULTS: Here we report a novel genotype-phenotype correlation in NF1: the identification of the missense variant NM_000267.3:c.3112A>G p.(Arg1038Gly) in seven individuals from two unrelated families with a mild phenotype. All the patients manifest cafè-au-lait spots without neurofibromas or other NF1-associated complications, and Noonan syndrome features in most cases. The missense variant was not previously reported in available databases, segregates with the phenotype and involves a highly conserved residue. Both a minigene assay and patient's RNA analysis excluded an effect on splicing. CONCLUSION: Our data support the correlation of the p.Arg1038Gly missense substitution with the cutaneous phenotype without neurofibromas or other complications. This finding may have relevant implications for patients and genetic counseling, but also to get insights into the function of neurofibromin.


Assuntos
Mutação de Sentido Incorreto , Neurofibromatose 1/genética , Neurofibromina 1/genética , Fenótipo , Adulto , Idoso , Criança , Feminino , Células HeLa , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Neurofibromatose 1/patologia , Neurofibromina 1/metabolismo , Linhagem
7.
Physiol Rev ; 99(1): 427-511, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427277

RESUMO

Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.


Assuntos
Envelhecimento/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/fisiopatologia , Sarcopenia/fisiopatologia , Animais , Humanos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Junção Neuromuscular/metabolismo , Sarcopenia/metabolismo
8.
Hum Mol Genet ; 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30481304

RESUMO

Noonan syndrome (NS), the most common RASopathy, is caused by mutations affecting signaling through RAS and the MAPK cascade. Recently, genome scanning has discovered novel genes implicated in NS, whose function in RAS-MAPK signaling remains obscure, suggesting the existence of unrecognized circuits contributing to signal modulation in this pathway. Among these genes, LZTR1 encodes a functionally poorly characterized member of the BTB/POZ protein superfamily. Two classes of germline LZTR1 mutations underlie dominant and recessive forms of NS, while constitutional monoallelic, mostly inactivating, mutations in the same gene cause schwannomatosis, a cancer-prone disorder clinically distinct from NS. Here we show that dominant NS-causing LZTR1 mutations do not affect significantly protein stability and subcellular localization. We provide the first evidence that these mutations, but not the missense changes occurring as biallelic mutations in recessive NS, enhance stimulus-dependent RAS-MAPK signaling, which is triggered, at least in part, by an increased RAS protein pool. Moreover, we document that dominant NS-causing mutations do not perturb binding of LZTR1 to CUL3, a scaffold coordinating the assembly of a multimeric complex catalyzing protein ubiquitination, but are predicted to affect the surface of the Kelch domain mediating substrate binding to the complex. Collectively, our data suggest a model in which LZTR1 contributes to the ubiquitination of protein(s) functioning as positive modulator(s) of the RAS-MAPK signaling pathway. In this model, LZTR1 mutations are predicted to variably impair binding of these substrates to the multi-component ligase complex and their efficient ubiquitination and degradation, resulting in MAPK signaling upregulation.

10.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3629-3638, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251682

RESUMO

Gyrate atrophy (GA) is a rare recessive disorder characterized by progressive blindness, chorioretinal degeneration and systemic hyperornithinemia. GA is caused by point mutations in the gene encoding ornithine δ-aminotransferase (OAT), a tetrameric pyridoxal 5'-phosphate-dependent enzyme catalysing the transamination of l-ornithine and α-ketoglutarate to glutamic-γ-semialdehyde and l-glutamate in mitochondria. More than 50 OAT variants have been identified, but their molecular and cellular properties are mostly unknown. A subset of patients is responsive to pyridoxine administration, although the mechanisms underlying responsiveness have not been clarified. Herein, we studied the effects of the V332M mutation identified in pyridoxine-responsive patients. The Val332-to-Met substitution does not significantly affect the spectroscopic and kinetic properties of OAT, but during catalysis it makes the protein prone to convert into the apo-form, which undergoes unfolding and aggregation under physiological conditions. By using the CRISPR/Cas9 technology we generated a new cellular model of GA based on HEK293 cells knock-out for the OAT gene (HEK-OAT_KO). When overexpressed in HEK-OAT_KO cells, the V332M variant is present in an inactive apodimeric form, but partly shifts to the catalytically-competent holotetrameric form in the presence of exogenous PLP, thus explaining the responsiveness of these patients to pyridoxine administration. Overall, our data represent the first integrated molecular and cellular analysis of the effects of a pathogenic mutation in OAT. In addition, we validated a novel cellular model for the disease that could prove instrumental to define the molecular defect of other GA-causing variants, as well as their responsiveness to pyridoxine and other putative drugs.

11.
Front Physiol ; 9: 1087, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154729

RESUMO

Oxidative stress and mitochondrial dysfunction play a crucial role in the pathophysiology of muscular dystrophies. We previously reported that the mitochondrial enzyme monoamine oxidase (MAO) is a relevant source of reactive oxygen species (ROS) not only in murine models of muscular dystrophy, in which it directly contributes to contractile impairment, but also in muscle cells from collagen VI-deficient patients. Here, we now assessed the efficacy of a novel MAO-B inhibitor, safinamide, using in vivo and in vitro models of Duchenne muscular dystrophy (DMD). Specifically, we found that administration of safinamide in 3-month-old mdx mice reduced myofiber damage and oxidative stress and improved muscle functionality. In vitro studies with myogenic cultures from mdx mice and DMD patients showed that even cultured dystrophic myoblasts were more susceptible to oxidative stress than matching cells from healthy donors. Indeed, upon exposure to the MAO substrate tyramine or to hydrogen peroxide, DMD muscle cells displayed a rise in ROS levels and a consequent mitochondrial depolarization. Remarkably, both phenotypes normalized when cultures were treated with safinamide. Given that safinamide is already in clinical use for neurological disorders, our findings could pave the way toward a promising translation into clinical trials for DMD patients as a classic case of drug repurposing.

12.
PLoS Biol ; 16(8): e2005886, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30096135

RESUMO

Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.

13.
Expert Rev Mol Diagn ; 18(6): 491-498, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29781757

RESUMO

INTRODUCTION: Coenzyme Q10 (CoQ) deficiency syndromes comprise a growing number of genetic disorders. While primary CoQ deficiency syndromes are rare diseases, secondary deficiencies have been related to both genetic and environmental conditions, which are the main causes of biochemical CoQ deficiency. The diagnosis is the essential first step for planning future treatment strategies, as the potential treatability of CoQ deficiency is the most critical issue for the patients. Areas covered: While the quickest and most effective tool to define a CoQ-deficient status is its biochemical determination in biological fluids or tissues, this quantification does not provide a definite diagnosis of a CoQ-deficient status nor insight about the genetic etiology of the disease. The different laboratory tests to check for CoQ deficiency are evaluated in order to choose the best diagnostic pathway for the patient. Expert commentary: New insights are being discovered about the implication of new proteins in the intricate CoQ biosynthetic pathway. These insights reinforce the idea that next generation sequencing diagnostic strategies are the unique alternative in terms of rapid and accurate molecular diagnosis of CoQ deficiency.

14.
Biochim Biophys Acta Bioenerg ; 1859(9): 901-908, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29694828

RESUMO

Idebenone is a hydrophilic short-chain coenzyme (Co) Q analogue, which has been used as a potential bypass of defective complex I in both Leber Hereditary Optic Neuropathy and OPA1-dependent Dominant Optic Atrophy. Based on its potential antioxidant effects, it has also been tested in degenerative disorders such as Friedreich's ataxia, Huntington's and Alzheimer's diseases. Idebenone is rapidly modified but the biological effects of its metabolites have been characterized only partially. Here we have studied the effects of quinones generated during in vivo metabolism of idebenone with specific emphasis on 6-(9-carboxynonyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (QS10). QS10 partially restored respiration in cells deficient of complex I or of CoQ without inducing the mitochondrial permeability transition, a detrimental effect of idebenone that may offset its potential benefits [Giorgio et al. (2012) Biochim. Biophys. Acta 1817: 363-369]. Remarkably, respiration was largely rotenone-insensitive in complex I deficient cells and rotenone-sensitive in CoQ deficient cells. These findings indicate that, like idebenone, QS10 can provide a bypass to defective complex I; and that, unlike idebenone, QS10 can partially replace endogenous CoQ. In zebrafish (Danio rerio) treated with rotenone, QS10 was more effective than idebenone in allowing partial recovery of respiration (to 40% and 20% of the basal respiration of untreated embryos, respectively) and allowing zebrafish survival (80% surviving embryos at 60 h post-fertilization, a time point at which all rotenone-treated embryos otherwise died). We conclude that QS10 is potentially more active than idebenone in the treatment of diseases caused by complex I defects, and that it could also be used in CoQ deficiencies of genetic and acquired origin.


Assuntos
Ataxia/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Embrião não Mamífero/metabolismo , Mitocôndrias Hepáticas/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Peixe-Zebra/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Ataxia/patologia , Respiração Celular , Células Cultivadas , Transporte de Elétrons , Complexo I de Transporte de Elétrons/deficiência , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Doenças Mitocondriais/patologia , Debilidade Muscular/patologia , Ubiquinona/química , Ubiquinona/metabolismo , Ubiquinona/farmacologia , Peixe-Zebra/embriologia
15.
Biochim Biophys Acta Bioenerg ; 1859(4): 244-252, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29355485

RESUMO

Cytochrome c oxidase (COX), complex IV of the mitochondrial respiratory chain, is comprised of 14 structural subunits, several prosthetic groups and metal cofactors, among which copper. Its biosynthesis involves a number of ancillary proteins, encoded by the COX-assembly genes that are required for the stabilization and membrane insertion of the nascent polypeptides, the synthesis of the prosthetic groups, and the delivery of the metal cofactors, in particular of copper. Recently, a modular model for COX assembly has been proposed, based on the sequential incorporation of different assembly modules formed by specific subunits. We have cloned and characterized the human homologue of yeast COX16. We show that human COX16 encodes a small mitochondrial transmembrane protein that faces the intermembrane space and is highly expressed in skeletal and cardiac muscle. Its knockdown in C. elegans produces COX deficiency, and its ablation in HEK293 cells impairs COX assembly. Interestingly, COX16 knockout cells retain significant COX activity, suggesting that the function of COX16 is partially redundant. Analysis of steady-state levels of COX subunits and of assembly intermediates by Blue-Native gels shows a pattern similar to that reported in cells lacking COX18, suggesting that COX16 is required for the formation of the COX2 subassembly module. Moreover, COX16 co-immunoprecipitates with COX2. Finally, we found that copper supplementation increases COX activity and restores normal steady state levels of COX subunits in COX16 knockout cells, indicating that, even in the absence of a canonical copper binding motif, COX16 could be involved in copper delivery to COX2.


Assuntos
Caenorhabditis elegans/enzimologia , Coenzimas/metabolismo , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Cátions Bivalentes , Clonagem Molecular , Transporte de Elétrons/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Expressão Gênica , Técnicas de Inativação de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Transporte de Íons , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
Hum Mutat ; 39(3): 406-414, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29194833

RESUMO

Mutations in COQ8B cause steroid-resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype-phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits.

17.
Eur J Obstet Gynecol Reprod Biol ; 221: 23-27, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29232625

RESUMO

OBJECTIVE: To study the outcome of a series of individuals with prenatal detection of trisomy 8 mosaicism by chorionic villus sampling (CVS) and/or amniocentesis. STUDY DESIGN: The databases of two Italian genetics units were reviewed to identify all consultations requested during pregnancy because of trisomy 8 mosaicism. To evaluate the pregnancy outcome, the regional registry of congenital malformations (including terminations of pregnancies) was consulted; additional follow-up data were collected by a telephone interview. The following outcomes were analysed: delivery, pre- and post-natal growth, psychomotor development, major malformations, other diseases/complications. RESULTS: A total of 17 consecutive cases of trisomy 8 mosaicism were identified. Fourteen cases were first detected among women undergoing prenatal diagnosis by CVS; the remaining ones were identified among women who underwent amniocentesis. In most cases diagnosed by CVS, the chromosomal anomaly was only detected in long-term cell cultures (10/14) and was not confirmed by amniocentesis (11/13). There were two terminations of pregnancy and 15 live births; no major birth defects were observed among live born infants and only a case with prenatal and postnatal growth retardation was observed (mean age at follow-up interview was 5.9 years). CONCLUSION: Our data showed an overall positive prognosis for cases with an apparent confined placental mosaicism and those with low-level mosaicism in amniotic fluid if no congenital anomalies were detected by foetal ultrasound examinations. However, larger studies are warranted to better define the associated risk of neurodevelopmental anomalies.


Assuntos
Amniocentese , Amostra da Vilosidade Coriônica , Diagnóstico Pré-Natal , Trissomia/diagnóstico , Dissomia Uniparental/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Cromossomos Humanos Par 8 , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Cariotipagem , Masculino , Mosaicismo , Gravidez , Resultado da Gravidez , Adulto Jovem
18.
Autophagy ; 14(2): 311-335, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29165030

RESUMO

In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we used a skeletal muscle-specific Csnk2b/Ck2ß-conditional knockout (cKO) mouse model. Phenotypically, these skeletal muscle Csnk2b cKO mice showed reduced muscle strength and abnormal metabolic activity of mainly oxidative muscle fibers, which point towards mitochondrial dysfunction. Enzymatically, active muscle lysates from skeletal muscle Csnk2b cKO mice phosphorylate murine TOMM22, the mammalian ortholog of yeast Tom22, to a lower extent than lysates prepared from controls. Mechanistically, CSNK2-mediated phosphorylation of TOMM22 changes its binding affinity for mitochondrial precursor proteins. However, in contrast to yeast, mitochondrial protein import seems not to be affected in vitro using mitochondria isolated from muscles of skeletal muscle Csnk2b cKO mice. PINK1, a mitochondrial health sensor that undergoes constitutive import under physiological conditions, accumulates within skeletal muscle Csnk2b cKO fibers and labels abnormal mitochondria for removal by mitophagy as demonstrated by the appearance of mitochondria-containing autophagosomes through electron microscopy. Mitophagy can be normalized by either introduction of a phosphomimetic TOMM22 mutant in cultured myotubes, or by in vivo electroporation of phosphomimetic Tomm22 into muscles of mice. Importantly, transfection of the phosphomimetic Tomm22 mutant in muscle cells with ablated Csnk2b restored their oxygen consumption rate comparable to wild-type levels. In sum, our data show that mammalian CSNK2-dependent phosphorylation of TOMM22 is a critical switch for mitophagy and reveal CSNK2-dependent physiological implications on metabolism, muscle integrity and behavior.

19.
J Inherit Metab Dis ; 41(2): 209-219, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29143201

RESUMO

BACKGROUND: Lysosomal storage diseases (LSDs) are inborn errors of metabolism resulting from 50 different inherited disorders. The increasing availability of treatments and the importance of early intervention have stimulated newborn screening (NBS) to diagnose LSDs and permit early intervention to prevent irreversible impairment or severe disability. We present our experience screening newborns in North East Italy to identify neonates with Mucopolysaccharidosis type I (MPS I) and Pompe, Fabry, and Gaucher diseases. METHODS: Activities of acid ß-glucocerebrosidase (ABG; Gaucher), acid α-glucosidase (GAA; Pompe), acid α-galactosidase (GLA; Fabry), and acid α-L-iduronidase (IDUA; MPS-I) in dried blood spots (DBS) from all newborns during a 17-month period were determined by multiplexed tandem mass spectrometry (MS/MS) using the NeoLSD® assay system. Enzymatic activity cutoff values were determined from 3500 anonymous newborn DBS. In the screening study, samples were retested if the value was below cutoff and a second spot was requested, with referral for confirmatory testing and medical evaluation if a low value was obtained. RESULTS: From September 2015 to January 2017, 44,411 newborns were screened for the four LSDs. We recalled 40 neonates (0.09%) for collection of a second DBS. Low activity was confirmed in 20, who had confirmatory testing. Ten of 20 had pathogenic mutations: two Pompe, two Gaucher, five Fabry, and one MPS-I. The incidences of Pompe and Gaucher diseases were similar (1/22,205), with Fabry disease the most frequent (1/8882) and MPS-I the rarest (1/44411). The combined incidence of the four disorders was 1/4411 births. CONCLUSIONS: Simultaneously determining multiple enzyme activities by MS/MS, with a focus on specific biochemical markers, successfully detected newborns with LSDs. The high incidence of these disorders supports this screening program.

20.
Nephrol Ther ; 13 Suppl 1: S23-S28, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28577739

RESUMO

Mitochondrial cytopathies include a heterogeneous group of diseases that are characterized by impaired oxidative phosphorylation. Current evidence suggests that renal involvement is probably more frequent than originally suspected but remains subclinical in a significant number of patients or is underestimated due to the severity of other clinical manifestations. Until recently, these diseases were thought to develop primarily in pediatric patients but patients that become symptomatic only in adulthood are now well recognized. From a renal standpoint, many patients with severe systemic disease and several patients with oligo-symptomatic clinical pictures have tubular defects, ranging from isolated tubular wasting of electrolytes to complete forms of renal Fanconi syndrome. Aside from rare cases of tubulo-interstitial and cystic diseases, other patients present with glomerular diseases that correspond in the majority of cases to focal segmental glomerulosclerosis lesions. Two specific entities should be singled out, namely the 3243 A>G mutation in the gene encoding for the mitochondrial leucine tRNA because it represents the most frequent form of mitochondrial glomerulopathy, and defects in the biosynthesis of coenzyme Q10 because they represent one of the few treatable forms of mitochondrial cytopathies.


Assuntos
DNA Mitocondrial/genética , Síndrome de Kearns-Sayre/genética , Nefropatias/genética , Miopatias Mitocondriais/genética , Mutação , Fosforilação Oxidativa , Síndrome de Fanconi/genética , Humanos , Síndrome de Kearns-Sayre/fisiopatologia , Nefropatias/fisiopatologia , Leucina/genética , Mitocôndrias/genética , Miopatias Mitocondriais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA