Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Dalton Trans ; 49(2): 482-491, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31833494


In this work, we present the synthesis, structural and photophysical characterization, and theoretical study of tetranuclear copper(i) cubane-type Cu4I4 clusters 6-10 with different 10-(aryl)phenoxarsine ligands - 10-(p-fluorophenyl)phenoxarsine (1), 10-(p-ethoxyphenyl)phenoxarsine (2), 10-(phenyl)phenoxarsine (3), 10-(m-fluorophenyl)phenoxarsine (4), and 10-(o-methoxyphenyl)phenoxarsine (5), respectively. The structures of 1-5 were confirmed by NMR spectroscopy, mass spectrometry, elemental analysis and for complexes 6, 7, and 10 by single-crystal X-ray diffraction analysis. The UV/Vis absorption and emission properties were studied and rationalized by DFT and time-dependent DFT calculations. In the solid state, under UV irradiation, all complexes exhibit an intense green emission, which was attributed to a cluster-centered triplet state.

Inorg Chem ; 58(12): 7698-7704, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144500


A series of novel charged disilver(I) complexes with pyridyl-containing phospholanes was synthesized. These complexes were characterized using a range of spectroscopic techniques and single-crystal and powder X-ray diffraction. The complexes demonstrate solid-state near-infrared (NIR) luminescence (765-902 nm) that is unique for dinuclear AgI complexes. Combined spectroscopic/quantum chemical analysis suggests that the NIR luminescence of complexes 4-6 in the solid state is mainly due to crystal packing effects.

Inorg Chem ; 58(2): 1048-1057, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30601648


The unique L2Cu6I6 complexes containing two Cu3I3 units have been obtained via reaction of 1,5-diaza-3,7-diphosphacyclooctanes bearing ethylpyridyl substituents at phosphorus atoms with an excess of copper iodide. The structure of one of the complexes was confirmed by X-ray diffraction. It was shown that the complexes can exist in two crystalline phases with different parameters of the unit cell, which were detected by the PXRD data analyses. The solvent-free crystalline phases of the complexes display rare solid-state white emission at room temperature, which is observed due to the presence of two broad bands in the emission spectra with maxima at 464 and 610 nm. Quantum chemical computations show that the high-energy band has 3(M+X)LCT origin, whereas the low-energy band is interpreted as 3CC. The quantum yields of white luminescence of complexes reach 15-20%.

Mikrochim Acta ; 185(8): 386, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30043251


The authors describe new ligands with two 1,3-diketone groups and two heteroaromatic (pyridyl or quinolyl) moieties embedded to the upper and lower rims of dibromo-substituted calix[4]arene scaffold. The ligands bind Tb(III) ions in alkaline DMF solutions to form 1:1 complexes. The strong Tb(III)-centered luminescence (with excitation/emission peaks at 330/545 nm) of the complexes results from efficient ligand-to-metal energy transfer. The complexes were incorporated into polystyrenesulfonate (PSS) colloids by diluting a DMF solution of the complex with aqueous solution of PSS. The luminescence of the colloids is quenched by copper(II), and this was used to develop a method for its fluorometric determination in nanomolar concentrations. The lower limit of detection is 0.88 nM. Quenching is a result of (a) ion exchange which converts the terbium complexes into their copper counterparts, and (b) energy transfer from Tb(III) to Cu(II) complexes. The low cytotoxicity of the colloidal nanoprobe conceivably makes it a promising tool for use in cellular imaging. Graphical abstract New calix[4]arene derivative provide efficient binding sites for Tb(III) and Cu(II) ions. The Tb(III) complexes were embedded to core-shell nanoparticles by solvent-mediated aggregation followed by polystryrenesulfonate deposition. The nanoparticles exhibit luminescence response on copper ions in nanomolar concentration range.