Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Saudi J Biol Sci ; 27(12): 3514-3528, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304163


Pomegranate (Punica granatum L.) is an important fruit crop, rich in fiber, vitamins, antioxidants, minerals and source of different biologically active compounds. The bacterial blight caused by Xanthomonas axonopodispv. punicae is a serious threat to the crop leading to 60-80% yield loss under epiphytotic conditions. In this work, we have generated comparative transcriptome profile to mark the gene expression signatures during resistance and susceptible interactions. We analyzed leaf and fruits samples of moderately resistant genotype (IC 524207) and susceptible variety (Bhagawa) of pomegranate at three progressive infection stages upon inoculation with the pathogen. RNA-Seq with the Illumina HiSeq 2500 platform revealed 1,88,337 non-redundant (nr) transcript sequences from raw sequencing data, for a total of 34,626 unigenes with size >2 kb. Moreover, 85.3% unigenes were annotated in at least one of the seven databases examined. Comparative analysis of gene-expression signatures in resistant and susceptible varieties showed that the genes known to be involved in defense mechanism in plants were up-regulated in resistant variety. Gene Ontology (GO) analysis successfully annotated 90,485 pomegranate unigenes, of which 68,464 were assigned to biological, 78,107 unigenes molecular function and 44,414 to cellular components. Significantly enriched GO terms in DEGs were related to oxidations reduction biological process, protein binding and oxidoreductase activity. This transcriptome data on pomegranate could help in understanding resistance and susceptibility nature of cultivars and further detailed fine mapping and functional validation of identified candidate gene would provide scope for resistance breeding programme in pomegranate.

Physiol Mol Biol Plants ; 26(4): 683-696, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32255932


A total of 17,439 mature miRNAs (~ 21 nt) earlier generated through RNA seq in the pomegranate were used for in silico analysis. After complexity reduction, a total of 1922 representative mature miRNAs were selected and used as query sequences against pomegranate genome to retrieve 2540 homologous contigs with flanking regions (~ 800). By using pre-miRNA prediction web server, a total of 1028 true contigs harbouring pri-miRNAs encoding 1162 pre-miRNAs were identified. Survey of these sequences for SSRs yielded a total of 1358 and 238 SSRs specific to pri-miRNA and pre-miRNAs, respectively. Of these, primer pairs were designed for 897 pri-miRNA and 168 pre-miRNA SSRs. In pri-miRNA sequences, hexa-nucleotides repeats were found to be most abundant (44.18%) followed by mono- (18.41%) and di-nucleotide (17.01%), which is also observed in pre-miRNA sequences. Further, a set of 51 randomly selected pre-miRNA-SSRs was examined for marker polymorphism. The experimental validation of these markers on eight pomegranate genotypes demonstrated 92.15% polymorphism. Utility of these functional markers was confirmed via examination of genetic diversity of 18 pomegranate genotypes using 15 miRNA-SSRs. Further, potential application of miRNA-SSRs for discovery of trait specific candidate genes was showed by validating 51 mature miRNA against publically available 2047 EST sequences of pomegranate by target and network analysis. In summary, the current study offers novel functional molecular markers for pomegranate genetic improvement.