RESUMO
Nonmagnetic chiral crystals are a new class of systems hosting Kramers-Weyl Fermions, arising from the combination of structural chirality, spin-orbit coupling (SOC), and time-reversal symmetry. These materials exhibit nontrivial Fermi surfaces with SOC-induced Chern gaps over a wide energy range, leading to exotic transport and optical properties. In this study, we investigate the electronic structure and transport properties of CdAs2, a newly reported chiral material. We use synchrotron-based angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT) to determine the Fermiology of the (110)-terminated CdAs2 crystal. Our results, together with complementary magnetotransport measurements, suggest that CdAs2 is a promising candidate for novel topological properties protected by the structural chirality of the system. Our work sheds light on the details of the Fermi surface and topology for this chiral quantum material, providing useful information for engineering novel spintronic and optical devices based on quantized chiral charges, negative longitudinal magnetoresistance, and nontrivial Chern numbers.
RESUMO
The review presents retrospective, present views and future perspectives for the treatment of status epilepticus (SE). First, presynaptic, postsynaptic and extra-synaptic mechanisms underlying sustaining ongoing seizure activity, are highlighted. Next, mechanism-based choices of antiseizure medications capable of promptly arresting SE are introduced. Finally, challenges associated with translating the advances in laboratory research in clinical practice are discussed.
RESUMO
A long-standing pursuit in materials science is to identify suitable magnetic semiconductors for integrated information storage, processing, and transfer. Van der Waals magnets have brought forth new material candidates for this purpose. Recently, sharp exciton resonances in antiferromagnet NiPS3 have been reported to correlate with magnetic order, that is, the exciton photoluminescence intensity diminishes above the Néel temperature. Here, it is found that the polarization of maximal exciton emission rotates locally, revealing three possible spin chain directions. This discovery establishes a new understanding of the antiferromagnet order hidden in previous neutron scattering and optical experiments. Furthermore, defect-bound states are suggested as an alternative exciton formation mechanism that has yet to be explored in NiPS3 . The supporting evidence includes chemical analysis, excitation power, and thickness dependent photoluminescence and first-principles calculations. This mechanism for exciton formation is also consistent with the presence of strong phonon side bands. This study shows that anisotropic exciton photoluminescence can be used to read out local spin chain directions in antiferromagnets and realize multi-functional devices via spin-photon transduction.
RESUMO
2D materials' junctions have demonstrated capabilities as metal-free alternatives for the hydrogen evolution reaction (HER). To date, the HER has been limited to heterojunctions of different compositions or band structures. Here, the potential of local strain modulation based on wrinkled 2D heterostructures is demonstrated, which helps to realize photoelectrocatalytically active junctions. By forming regions of high and low tensile strain in wrinkled WS2 monolayers, local modification of their band structure and internal electric field due to piezoelectricity is realized in the lateral direction. This structure produces efficient electron-hole pair generation due to light trapping and exciton funneling toward the crest of the WS2 wrinkles and enhances exciton separation. Additionally, the formation of wrinkles induces an air gap in-between the 2D layer and substrate, which reduces the interfacial scattering effect and consequently improves the charge-carrier mobility. A detailed study of the strain-dependence of the photocatalytic HER process demonstrates a 2-fold decrease in the Tafel slope and a 30-fold enhancement in exchange current density. Finally, optimization of the light absorption through functionalization with quantum dots produces unprecedented photoelectrocatalytic performance and provides a route toward the scalable formation of strain-modulated WS2 nanojunctions for future green energy generation.
RESUMO
Indium selenide (InSe) is an emerging van der Waals material, which exhibits the potential to serve in excellent electronic and optoelectronic devices. One of the advantages of layered materials is their application to flexible devices. How strain alters the electronic and optical properties is, thus, an important issue. In this work, we experimentally measured the strain dependence on the angle-resolved second harmonic generation (SHG) pattern of a few layers of InSe. We used the exfoliation method to fabricate InSe flakes and measured the SHG images of the flakes with different azimuthal angles. We found the SHG intensity of InSe decreased, while the compressive strain increased. Through first-principles electronic structure calculations, we investigated the strain dependence on SHG susceptibilities and the corresponding angle-resolved SHG pattern. The experimental data could be fitted well by the calculated results using only a fitting parameter. The demonstrated method based on first-principles in this work can be used to quantitatively model the strain-induced angle-resolved SHG patterns in 2D materials. Our obtained results are very useful for the exploration of the physical properties of flexible devices based on 2D materials.
RESUMO
InSe layered semiconductors with high mobility have advantages over transition-metal dichalcogenides in certain device applications. Understanding the dynamics of carriers, especially around the major bandgaps, is not only of fundamental interest but also important for improving the performance of devices. We investigated ultrafast carrier dynamics in exfoliated InSe near the bandgap and found that the presence of photocarriers led to shrinkage in the optical bandgap. In addition, we observed that the carrier recombination rate increased when the thickness of the InSe nanoflakes was reduced and the process was dominated by surface recombination. For the same flakes, the recombination rate became lower after the freshly exfoliated InSe was exposed to air and oxidized. Using a free carrier diffusion model, layer-dependent surface recombination velocities were obtained. Our investigation reveals that the surface condition and the thickness of few-layer InSe play important roles in carrier lifetimes.
RESUMO
Objective.Intracranially-recorded interictal high-frequency oscillations (HFOs) have been proposed as a promising spatial biomarker of the epileptogenic zone. However, HFOs can also be recorded in the healthy brain regions, which complicates the interpretation of HFOs. The present study aimed to characterize salient features of physiological HFOs using deep learning (DL).Approach.We studied children with neocortical epilepsy who underwent intracranial strip/grid evaluation. Time-series EEG data were transformed into DL training inputs. The eloquent cortex (EC) was defined by functional cortical mapping and used as a DL label. Morphological characteristics of HFOs obtained from EC (ecHFOs) were distilled and interpreted through a novel weakly supervised DL model.Main results.A total of 63 379 interictal intracranially-recorded HFOs from 18 children were analyzed. The ecHFOs had lower amplitude throughout the 80-500 Hz frequency band around the HFO onset and also had a lower signal amplitude in the low frequency band throughout a one-second time window than non-ecHFOs, resembling a bell-shaped template in the time-frequency map. A minority of ecHFOs were HFOs with spikes (22.9%). Such morphological characteristics were confirmed to influence DL model prediction via perturbation analyses. Using the resection ratio (removed HFOs/detected HFOs) of non-ecHFOs, the prediction of postoperative seizure outcomes improved compared to using uncorrected HFOs (area under the ROC curve of 0.82, increased from 0.76).Significance.We characterized salient features of physiological HFOs using a DL algorithm. Our results suggested that this DL-based HFO classification, once trained, might help separate physiological from pathological HFOs, and efficiently guide surgical resection using HFOs.
Assuntos
Aprendizado Profundo , Epilepsia , Criança , Humanos , Eletroencefalografia/métodos , Convulsões , EncéfaloRESUMO
We report the successful growth of high-quality single crystals of Sr0.94Mn0.86Te1.14O6 (SMTO) using a self-flux method. The structural, electronic, and magnetic properties of SMTO are investigated by neutron powder diffraction (NPD), single-crystal X-ray diffraction (SCXRD), thermodynamic, and nuclear magnetic resonance techniques in conjunction with density functional theory calculations. NPD unambiguously determined octahedral (trigonal antiprismatic) coordination for all cations with the chiral space group P312 (no. 149), which is further confirmed by SCXRD data. The Mn and Te elements occupy distinct Wyckoff sites, and minor anti-site defects were observed in both sites. X-ray photoelectron spectroscopy reveals the existence of mixed valence states of Mn in SMTO. The magnetic susceptibility and specific heat data evidence a weak antiferromagnetic order at TN = 6.6 K. The estimated Curie-Weiss temperature θCW = -21 K indicates antiferromagnetic interaction between Mn ions. Furthermore, both the magnetic entropy and the 125Te nuclear spin-lattice relaxation rate showcase that short-range spin correlations persist well above the Néel temperature. Our work demonstrates that Sr0.94(2)Mn0.86(3)Te1.14(3)O6 single crystals realize a noncentrosymmetric triangular antiferromagnet.
RESUMO
Prenol and isoprenoids are common structural motifs in biological systems and possess diverse applications. An unprecedented direct catalytic prenylation of ketones using prenol is attained. This C-C bond formation reaction requires only a ruthenium pincer catalyst and a base, and H2O is the only byproduct.
RESUMO
Glide-mirror symmetry in nonsymmorphic crystals can foster the emergence of novel hourglass nodal loop states. Here, we present spectroscopic signatures from angle-resolved photoemission of a predicted topological hourglass semimetal phase in Nb3SiTe6. Linear band crossings are observed at the zone boundary of Nb3SiTe6, which could be the origin of the nontrivial Berry phase and are consistent with a predicted glide quantum spin Hall effect; such linear band crossings connect to form a nodal loop. Furthermore, the saddle-like Fermi surface of Nb3SiTe6 observed in our results helps unveil linear band crossings that could be missed. In situ alkali-metal doping of Nb3SiTe6 also facilitated the observation of other band crossings and parabolic bands at the zone center correlated with accidental nodal loop states. Overall, our results complete the system's band structure, help explain prior Hall measurements, and suggest the existence of a nodal loop at the zone center of Nb3SiTe6.
RESUMO
It has been well established that traumatic brain injury (TBI) modifies the composition of gut microbiome. Epilepsy, which represents one of the common sequelae of TBI, has been associated with dysbiosis. Earlier study showed that the risk of post-traumatic epilepsy (PTE) after lateral fluid percussion injury (LFPI) in rats can be stratified based on pre-existing (i.e., pre-TBI) gut microbiome profile. In the present study, we examined whether fecal microbiota transfer (FMT) from naïve rats with different prospective histories of PTE would affect the trajectory of PTE in recipients. Fecal samples were collected from naïve adult male Sprague-Dawley rats, followed by LFPI. Seven months later, upon four weeks of vide-EEG monitoring (vEEG), the rats were categorized as those with and without PTE. Recipients were subjected to LFPI, followed by FMT from donors with and without impending PTE. Control groups included auto-FMT and no-FMT subjects. Seven month after LFPI, recipients underwent four-week vEEG to detect spontaneous seizures. After completing vEEG, rats of all groups underwent kindling of basolateral amygdala. Fecal microbiota transfer from donors with impending PTE exerted mild-to-moderate pro-epileptic effects in recipients, evident as marginal increase in multiple spontaneous seizure incidence, and facilitation of kindling. Analysis of fecal samples in selected recipients and their respective donors confirmed that FMT modified microbiota in recipients along the donors' lines, albeit without full microbiome conversion. The findings provide further evidence that gut microbiome may actively modulate the susceptibility to epilepsy.
Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Transplante de Microbiota Fecal , Humanos , Masculino , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , ConvulsõesRESUMO
Organoborane-catalyzed hydroboration of nitriles provides N,N-diborylamines, which act as efficient synthons for the synthesis of primary amines and secondary amides. Known nitrile hydroboration methods are dominated by metal catalysis. Simple and metal-free hydroboration of nitriles using diborane [H-B-9-BBN]2 as a catalyst and pinacolborane as a turnover reagent is reported. The reaction of monomeric H-B-9-BBN with nitriles leads to the hydrido-bridged diborylimine intermediate; a subsequent sequential double hydroboration-transborylation pathway involving B-N/B-H σ bond metathesis is proposed.
RESUMO
Indium selenide (InSe) features intriguing thickness-dependent optoelectronic properties, and a simple, and precise way to identify the thickness is essential for the rapid development of InSe research. Here, a red, green, and blue (RGB) color contrast method with regression analysis for quantitative correlation of three optical contrasts from RGB channels with the InSe thickness (1-35 nm), is demonstrated. The lower accuracy of the thickness identification obtained from the individual channels was discussed. Moreover, the effective refractive indices in the three RGB regions can be extracted from the Fresnel equation and numerical analysis by finding the best fit to the experimental optical contrast. After further consideration of the wavelength-dependent refractive indices, the slope of the regression line between the estimated thickness and that obtained from the atomic force microscope was improved from 1.59 ± 0.05 to 0.97 ± 0.02. The complex refractive index spectra of InSe (1-10 layers) generated fromab initionumerical calculation results were also adopted to identify the InSe thickness. Compared to dispersion, the evolution of the band structure had less effect on thickness identification. This work could be extended to other layered materials, facilitate the thickness-dependent study of layered materials, and expedite the realization of their practical applications.
RESUMO
We identify and manipulate commonly occurring defects in black phosphorus, combining scanning tunneling microscopy experiments with density functional theory calculations. A ubiquitous defect, imaged at negative bias as a bright dumbbell extending over several nanometers, is shown to arise from a substitutional Sn impurity in the second sublayer. Another frequently observed defect type is identified as arising from an interstitial Sn atom; this defect can be switched to a more stable configuration consisting of a Sn substitutional defect + P adatom, by application of an electrical pulse via the STM tip. DFT calculations show that this pulse-induced structural transition switches the system from a non-magnetic configuration to a magnetic one. We introduce States Projected Onto Individual Layers (SPOIL) quantities which provide information about atom-wise and orbital-wise contributions to bias-dependent features observed in STM images.
RESUMO
Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto-optical methods to determine experimentally the energy band gap -a fundamental property crucial to our understanding of any solid-with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band-gap renormalization driven by Lorentz boosts which results from the Lorentz-covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.
RESUMO
This study assessed the effectiveness of genetic testing in shortening the time to diagnosis of late infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease. Individuals who received epilepsy gene panel testing through Behind the Seizure® , a sponsored genetic testing program (Cohort A), were compared to children outside of the sponsored testing program during the same period (Cohort B). Two cohorts were analyzed: children aged ≥24 to ≤60 months with unprovoked seizure onset at ≥24 months between December 2016 and January 2020 (Cohort 1) and children aged 0 to ≤60 months at time of testing with unprovoked seizure onset at any age between February 2019 and January 2020 (Cohort 2). The diagnostic yield in Cohort 1A (n = 1814) was 8.4% (n = 153). The TPP1 diagnostic yield within Cohort 1A was 2.9-fold higher compared to Cohort 1B (1.0%, n = 18/1814 vs. .35%, n = 8/2303; p = .0157). The average time from first symptom to CLN2 disease diagnosis was significantly shorter than previously reported (9.8 vs. 22.7 months, p < .001). These findings indicate that facilitated access to early epilepsy gene panel testing helps to increase diagnostic yield for CLN2 disease and shortens the time to diagnosis, enabling earlier intervention.
Assuntos
Epilepsia , Lipofuscinoses Ceroides Neuronais , Aminopeptidases/genética , Criança , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Epilepsia/diagnóstico , Epilepsia/genética , Testes Genéticos , Humanos , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/genética , Convulsões/genética , Serina Proteases/genética , Tripeptidil-Peptidase 1RESUMO
OBJECTIVE: We examined whether posttraumatic epilepsy (PTE) is associated with measurable perturbations in gut microbiome. METHODS: Adult Sprague Dawley rats were subjected to lateral fluid percussion injury (LFPI). PTE was examined 7 months after LFPI, during 4-week continuous video-electroencephalographic monitoring. 16S ribosomal RNA gene sequencing was performed in fecal samples collected before LFPI/sham-LFPI and 1 week, 1 month, and 7 months thereafter. Longitudinal analyses of alpha diversity, beta diversity, and differential microbial abundance were performed. Short-chain fatty acids (SCFAs) were measured in fecal samples collected before LFPI by liquid chromatography with tandem mass spectrometry. RESULTS: Alpha diversity changed over time in both LFPI and sham-LFPI subjects; no association was observed between alpha diversity and LFPI, the severity of post-LFPI neuromotor impairments, and PTE. LFPI produced significant changes in beta diversity and selective changes in microbial abundances associated with the severity of neuromotor impairments. No association between LFPI-dependent microbial perturbations and PTE was detected. PTE was associated with beta diversity irrespective of timepoint vis-à-vis LFPI, including at baseline. Preexistent fecal microbial abundances of four amplicon sequence variants belonging to the Lachnospiraceae family (three enriched and one depleted) predicted the risk of PTE, with area under the curve (AUC) of .73. Global SCFA content was associated with the increased risk of PTE, with AUC of .722, and with 2-methylbutyric (depleted), valeric (depleted), isobutyric (enriched), and isovaleric (enriched) acids being the most important factors (AUC = .717). When the analyses of baseline microbial and SCFA compositions were combined, AUC to predict PTE increased to .78. SIGNIFICANCE: Whereas LFPI produces no perturbations in the gut microbiome that are associated with PTE, the risk of PTE can be stratified based on preexistent microbial abundances and SCFA content.
Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Microbioma Gastrointestinal , Animais , Lesões Encefálicas Traumáticas/complicações , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética , Humanos , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Digital communication has emerged as a major source of scientific and medical information for health care professionals. There is a need to set up an effective and reliable methodology to assess and monitor the quality of content that is published on the internet. OBJECTIVE: The aim of this project was to develop content quality guidelines for Neurodiem, an independent scientific information platform dedicated to neurology for health care professionals and neuroscientists. These content quality guidelines are intended to be used by (1) content providers as a framework to meet content quality standards and (2) reviewers as a tool for analyzing and scoring quality of content. METHODS: Specific scientific criteria were designed using a 5-point scale to measure the quality of curated and original content published on the website: for Summaries, (1) source reliability and topic relevance for neurologists, (2) structure, and (3) scientific and didactic value; for Congress highlights, (1) relevance of congress selection, (2) congress coverage based on the original program, and (3) scientific and didactic value of individual abstracts; for Expert points of view and talks, (1) credibility (authorship) and topic relevance for neurologists, (2) scientific and didactic value, and (3) reliability (references) and format. The criteria were utilized on a monthly basis and endorsed by an independent scientific committee of widely recognized medical experts in neurology. RESULTS: Summary content quality for the 3 domains (reliability and relevance, structure, and scientific and didactic value) increased in the second month after the implementation of the guidelines. The domain scientific and didactic value had a mean score of 8.20/10. Scores for the domains reliability and relevance (8-9/10) and structure (45-55/60) showed that the maintenance of these 2 quality items over time was more challenging. Talks (either in the format of interviews or slide deck-supported scientific presentations) and expert point of view demonstrated high quality after the implementation of the content quality guidelines that was maintained over time (15-25/25). CONCLUSIONS: Our findings support that content quality guidelines provide both (1) a reliable framework for generating independent high-quality content that addresses the educational needs of neurologists and (2) are an objective evaluation tool for improving and maintaining scientific quality level. The use of these criteria and this scoring system could serve as a standard and reference to build an editorial strategy and review process for any medical news or platforms.
RESUMO
Photoconductivity, a crucial property, determines the potential of semiconductor materials for use in optoelectronic and photocatalytic device applications. The one-dimensional metal-organic nanotube semiconducting material [{Re(CO)3}6(bho)(phpy)6]n (MBT 1, where bho is benzene-1,2,3,4,5,6-hexaoate and phpy is 4-phenylpyridine) reported herein exhibits record photocurrent responses at a broad spectral range. MBT 1 is comprised of a unique nanotube structure that is composed of six rhenium sites, six 4-phenylpyridine ligands, and a benzene-1,2,3,4,5,6-hexaoate unit. The highly organized self-assembled molecular bamboo tube MBT 1 displays semiconducting characteristics with a low activation energy of 1.63 meV. The alternating current (AC) and direct current (DC) conductivities of pellet devices are approximately 10-4 S/cm. For a single-crystal device, DC conductivity was found to be 1.5 S/cm, an unprecedented 10â¯000 times higher. The bandgap of MBT 1 was determined to be 1.03 eV, consistent with the theoretically estimated value of 1.2 eV. Theoretical calculations suggest that the unique structural architecture of MBT 1 allows for effective charge transport, which is facilitated by the spatial separation of electrons and holes that MBT 1 contains. This also eliminates fast charge recombination. The findings are not only chemically and fundamentally important but also have great potential for applications in innovative nano-optoelectronics.