Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Filtros adicionais











Intervalo de ano
1.
Eur J Hum Genet ; 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591517

RESUMO

The HoxD cluster is critical for vertebrate limb development. Enhancers located in both the telomeric and centromeric gene deserts flanking the cluster regulate the transcription of HoxD genes. In rare patients, duplications, balanced translocations or inversions misregulating HOXD genes are responsible for mesomelic dysplasia of the upper and lower limbs. By aCGH, whole-genome mate-pair sequencing, long-range PCR and fiber fluorescent in situ hybridization, we studied patients from two families displaying mesomelic dysplasia limited to the upper limbs. We identified microduplications including the HOXD cluster and showed that microduplications were in an inverted orientation and inserted between the HOXD cluster and the telomeric enhancers. Our results highlight the existence of an autosomal dominant condition consisting of isolated ulnar dysplasia caused by microduplications inserted between the HOXD cluster and the telomeric enhancers. The duplications likely disconnect the HOXD9 to HOXD11 genes from their regulatory sequences. This presumptive loss-of-function may have contributed to the phenotype. In both cases, however, these rearrangements brought HOXD13 closer to telomeric enhancers, suggesting that the alterations derive from the dominant-negative effect of this digit-specific protein when ectopically expressed during the early development of forearms, through the disruption of topologically associating domain structure at the HOXD locus.

2.
Eur J Med Genet ; : 103776, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31562959

RESUMO

Chromoanagenesis represents an extreme form of genomic rearrangements involving multiple breaks occurring on a single or multiple chromosomes. It has been recently described in both acquired and rare constitutional genetic disorders. Constitutional chromoanagenesis events could lead to abnormal phenotypes including developmental delay and congenital anomalies, and have also been implicated in some specific syndromic disorders. We report the case of a girl presenting with growth retardation, hypotonia, microcephaly, dysmorphic features, coloboma, and hypoplastic corpus callosum. Karyotype showed a de novo structurally abnormal chromosome 14q31qter region. Molecular characterization using SNP-array revealed a complex unbalanced rearrangement in 14q31.1-q32.2, on the paternal chromosome 14, including thirteen interstitial deletions ranging from 33 kb to 1.56 Mb in size, with a total of 4.1 Mb in size, thus suggesting that a single event like chromoanagenesis occurred. To our knowledge, this is one of the first case of 14q distal deletion due to a germline chromoanagenesis. Genome sequencing allowed the characterization of 50 breakpoints, leading to interruption of 10 genes including YY1 which fit with the patient's phenotype. This precise genotyping of breaking junction allowed better definition of genotype-phenotype correlations.

3.
Mol Genet Genomic Med ; 7(10): e00939, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31454185

RESUMO

BACKGROUND: Pallister-Killian syndrome (PKS) is a rare sporadic disorder caused by tetrasomy of the short arm of chromosome 12. The main clinical manifestations are global developmental delay, intellectual disability, epilepsy, dysmorphic features, hypopigmented and/or hyperpigmented lesions, and multiple congenital anomalies. PKS is associated with tissue mosaicism, which is difficult to diagnose through peripheral blood sample by conventional cytogenetic methods and fluorescence in situ hybridization. METHODS: Here, we report five patients with PKS. We delineate their clinical phenotypes and we compare them with previously published cases. We used array Comparative Genomic Hybridization (aCGH) with DNA extracted from peripheral blood samples. The five patients have also been tested by conventional cytogenetics techniques. RESULTS: Four out of five patients showed tetrasomy 12p by aCGH. Three of the four patients have typical i(12p) and one of the four demonstrated atypical tetrasomy 12p. The percentage of mosaicism was as low as 20%. Our cohort exhibited the typical PKS phenotypes. CONCLUSION: Our results demonstrate the efficacy of aCGH for the diagnosis of PKS from DNA extracted from lymphocytes. Thus, for patients suspected of PKS, we recommend performing aCGH on lymphocytes at an early age before  proceeding to skin biopsy. aCGH on peripheral blood samples is sensitive in detecting low level of mosaicism and it is less invasive method than skin biopsy. We reviewed also the literature concerning the previously published PKS patients diagnosed by aCGH.

4.
J Med Genet ; 56(10): 701-710, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31451536

RESUMO

BACKGROUND: The 15q11.2 deletion is frequently identified in the neurodevelopmental clinic. Case-control studies have associated the 15q11.2 deletion with neurodevelopmental disorders, and clinical case series have attempted to delineate a microdeletion syndrome with considerable phenotypic variability. The literature on this deletion is extensive and confusing, which is a challenge for genetic counselling. The aim of this study was to estimate the effect size of the 15q11.2 deletion and quantify its contribution to neurodevelopmental disorders. METHODS: We performed meta-analyses on new and previously published case-control studies and used statistical models trained in unselected populations with cognitive assessments. We used new (n=241) and previously published (n=150) data from a clinically referred group of deletion carriers. 15q11.2 duplications (new n=179 and previously published n=35) were used as a neutral control variant. RESULTS: The deletion decreases IQ by 4.3 points. The estimated ORs and respective frequencies in deletion carriers for intellectual disabilities, schizophrenia and epilepsy are 1.7 (3.4%), 1.5 (2%) and 3.1 (2.1%), respectively. There is no increased risk for heart malformations and autism. In the clinically referred group, the frequency and nature of symptoms in deletions are not different from those observed in carriers of the 15q11.2 duplication suggesting that most of the reported symptoms are due to ascertainment bias. CONCLUSIONS: We recommend that the deletion should be classified as 'pathogenic of mild effect size'. Since it explains only a small proportion of the phenotypic variance in carriers, it is not worth discussing in the developmental clinic or in a prenatal setting.

5.
Eur J Med Genet ; 62(10): 103726, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31319223

RESUMO

GRM1 gene, that is located on 6q24.3, encodes the metabotropic glutamate receptor type 1 (mGluR1), a transmembrane protein highly expressed in cerebellar Purkinje cells. Pathogenic variants in GRM1 have been reported only three times in humans, causing autosomal-recessive cerebellar ataxia with early-onset and intellectual disability or dominant forms of cerebellar ataxia with less severe phenotype in adults. We report a six-year-old boy, born to inbred parents, with an early-onset cerebellar syndrome due to a homozygous autosomal-recessive GRM1 pathogenic variant. In addition to cerebellar ataxia, axial hypotonia and oculomotor signs, he showed a severe and global developmental delay with lack of walking and speech and slight facial dysmorphic features. Brain MRI, performed at 1 year and at 5 years, showed a slowly progressive cerebellar atrophy. A novel homozygous truncating variant in the second exon of GRM1 gene (c.889C>T, p.(Arg297*)), inherited from the heterozygous healthy parents, was found by exome sequencing. Our observation not only emphasizes the central role of mGluR1-mediated signaling in cerebellar function and neurodevelopment but also provides valuable insights into the early clinical signs of recessive ataxia due to GRM1 pathogenic variants that were not reported previously. The difficulties of clinical differential diagnosis between this disease and other forms of congenital ataxia and the unspecific cerebellar atrophy on MRI highlight the importance of large-scale genetic investigations.

6.
Prenat Diagn ; 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273809

RESUMO

OBJECTIVE: Uniparental disomy (UPD) testing is currently recommended during pregnancy in fetuses carrying a balanced Robertsonian translocation (ROB) involving chromosome 14 or 15, both chromosomes containing imprinted genes. The overall risk that such a fetus presents a UPD has been previously estimated to be around ~0.6-0.8%. However, because UPD are rare events and this estimate has been calculated from a number of studies of limited size, we have reevaluated the risk of UPD in fetuses for whom one of the parents was known to carry a nonhomologous ROB (NHROB). METHOD: We focused our multicentric study on NHROB involving chromosome 14 and/or 15. A total of 1747 UPD testing were performed in fetuses during pregnancy for the presence of UPD(14) and/or UPD(15). RESULT: All fetuses were negative except one with a UPD(14) associated with a maternally inherited rob(13;14). CONCLUSION: Considering these data, the risk of UPD following prenatal diagnosis of an inherited ROB involving chromosome 14 and/or 15 could be estimated to be around 0.06%, far less than the previous estimation. Importantly, the risk of miscarriage following an invasive prenatal sampling is higher than the risk of UPD. Therefore, we do not recommend prenatal testing for UPD for these pregnancies and parents should be reassured.

8.
Orphanet J Rare Dis ; 14(1): 121, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151468

RESUMO

Williams Beuren syndrome (WBS) is a multiple malformations/intellectual disability (ID) syndrome caused by 7q11.23 microdeletion and clinically characterized by a typical neurocognitive profile including excessive talkativeness and social disinhibition, often defined as "overfriendliness" and "hyersociability". WBS is generally considered as the polar opposite phenotype to Autism Spectrum Disorder (ASD). Surprisingly, the prevalence of ASD has been reported to be significantly higher in WBS (12%) than in general population (1%). Our study aims to investigate the molecular basis of the peculiar association of ASD and WBS. We performed chromosomal microarray analysis and whole exome sequencing in six patients presenting with WBS and ASD, in order to evaluate the possible presence of chromosomal or gene variants considered as pathogenic.Our study shows that the presence of ASD in the recruited WBS patients is due to i) neither atypically large deletions; ii) nor the presence of pathogenic variants in genes localized in the non-deleted 7q11.23 allele which would unmask recessive conditions; iii) moreover, we did not identify a second, indisputable independent genetic diagnosis, related to pathogenic Copy Number Variations or rare pathogenic exonic variants in known ID/ASD causing genes, although several variants of unknown significance were found. Finally, imprinting effect does not appear to be the only cause of autism in WBS patients, since the deletions occurred in alleles of both maternal and paternal origin.The social disinhibition observed in WBS does not follow common social norms and symptoms overlapping with ASD, such as restricted interests and repetitive behavior, can be observed in "typical" WBS patients: therefore, the terms "overfriendliness" and "hypersociability" appear to be a misleading oversimplification.The etiology of ASD in WBS is likely to be heterogeneous. Further studies on large series of patients are needed to clarify the observed variability in WBS social communication, ranging from excessive talkativeness and social disinhibition to absence of verbal language and social deficit.

9.
Hum Mutat ; 2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31230393

RESUMO

Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.

11.
Cytogenet Genome Res ; 157(3): 141-147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947196

RESUMO

Chromosomal microarray (CMA) is currently considered as a first-tier test in the genetic assessment of patients presenting with intellectual disability and/or multiple congenital abnormalities. The distinction between pathogenic CNVs, polymorphisms, and variants of unknown significance can be a diagnostic dilemma for cytogeneticists. The size of the CNV has been proposed as a useful criterion. We herein report the characterization of a 13.6-Mb interstitial duplication 20p11.1p12.1, found in a child presenting with mild global developmental delay, by standard karyotype and CMA. Unexpectedly, the same CNV was detected in the patient's mother and pregnant sister, who were healthy. On the basis of these results, an implication of this CNV in the neurological problems observed in the proband was considered to be unlikely. This report underlines the complexity of genetic counseling concerning rare chromosomal abnormalities, when little information is available either in the literature or in international cytogenetic databases.


Assuntos
Duplicação Cromossômica , Coloração Cromossômica/métodos , Anormalidades Congênitas/genética , Deficiência Intelectual/genética , Criança , Variações do Número de Cópias de DNA , Feminino , Aconselhamento Genético , Humanos , Masculino , Mães , Linhagem , Irmãos
12.
J Thromb Haemost ; 17(7): 1097-1103, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31021037

RESUMO

Essentials No F8 genetic abnormality is detected in about 2% of severe hemophilia A patients. Detection of F8 structural variants remains a challenge. We identified a new F8 rearrangement in a severe hemophilia A patient using nanopore sequencing. We highlight the value of single-molecule long-read sequencing technologies in a genomics laboratory. BACKGROUND: No F8 genetic abnormality is detected in about 2% of severe hemophilia A patients using conventional genetic approaches. In these patients, deep intronic variation or F8 disrupting genomic rearrangement could be causal. OBJECTIVE: To characterize, in a genetically unresolved severe hemophilia A patient, a new Xq28 rearrangement disrupting F8 using comprehensive molecular techniques including nanopore sequencing. RESULTS: Long-range polymerase chain reaction (PCR) performed throughout F8 identified a nonamplifiable region in intron 25 indicating the presence of a genomic rearrangement. F8 messanger ribonucleic acid (mRNA) analysis including 3'rapid amplification of complementary deoxyribonucleic acid (cDNA) ends and nanopore sequencing found the presence of a F8 fusion transcript in which F8 exon 26 was replaced by a 742-bp pseudoexon corresponding to a noncoding region located at the beginning of the long arm of chromosome X (Xq12; chrX: 66 310 352-66 311 093, GRCh37/hg19). Cytogenetic microarray analysis found the presence of a Xq11.1q12 gain of 3.8 Mb. The PCR amplification of junction fragments and fluorescent in situ hybridization (FISH) analysis found that the Xq11q12 duplicated region was inserted in the F8 intron 25 genomic region. CONCLUSION: We characterized a novel genomic rearrangement in which a 3.8-Mb Xq11.1q12 gain inserted in the F8 intron 25 led to an aberrant fusion transcript in a patient with severe hemophilia A (HA), using comprehensive molecular techniques. This study highlights the value of single-molecule long-read sequencing technologies for molecular diagnosis of HA especially when conventional genetic approaches have failed.

13.
Prenat Diagn ; 39(6): 464-470, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896039

RESUMO

OBJECTIVES: Congenital heart defects (CHDs) may be isolated or associated with other malformations. The use of chromosome microarray (CMA) can increase the genetic diagnostic yield for CHDs by between 4% and 10%. The objective of this study was to evaluate the value of CMA after the prenatal diagnosis of an isolated CHD. METHODS: In a retrospective, nationwide study performed in France, we collected data on all cases of isolated CHD that had been explored using CMAs in 2015. RESULTS: A total of 239 fetuses were included and 33 copy number variations (CNVs) were reported; 19 were considered to be pathogenic, six were variants of unknown significance, and eight were benign variants. The anomaly detection rate was 10.4% overall but ranged from 0% to 16.7% as a function of the isolated CHD in question. The known CNVs were 22q11.21 deletions (n = 10), 22q11.21 duplications (n = 2), 8p23 deletions (n = 2), an Alagille syndrome (n = 1), and a Kleefstra syndrome (n = 1). CONCLUSION: The additional diagnostic yield was clinically significant (3.1%), even when anomalies in the 22q11.21 region were not taken into account. Hence, patients with a suspected isolated CHD and a normal karyotype must be screened for chromosome anomalies other than 22q11.21 duplications and deletions.

14.
Eur J Hum Genet ; 27(5): 701-710, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30710147

RESUMO

Exome sequencing (ES) has revolutionized diagnostic procedures in medical genetics, particularly for developmental diseases. The variety and complexity of the information produced has raised issues regarding its use in a clinical setting. Of particular interest are patients' expectations regarding the information disclosed, the accompaniment provided, and the value patients place on these. To explore these issues in parents of children with developmental disorders and no diagnosis with known etiology, a multidisciplinary group of researchers from social and behavioral sciences and patient organizations conducted a mixed-methodology study (quantitative and qualitative) in two centers of expertise for rare diseases in France. The quantitative study aimed to determine the preferences of 513 parents regarding the disclosure of ES results. It showed that parents wished to have exhaustive information, including variants of unknown significance possibly linked to their child's disorder and secondary findings. This desire for information could be a strategy to maximize the chances of obtaining a diagnosis. The qualitative study aimed to understand the expectations and reactions of 57 parents interviewed just after the return of ES results. In-depth analysis showed that parents had ambivalent feelings about the findings whatever the results returned. The contrasting results from these studies raise questions about the value of the information provided and parents' high expectations regarding the results. The nature of parental expectations has emerged as an important topic in efforts to optimize accompaniment and support for families during the informed decision-making process and after disclosure of the results in an overall context of uncertainty.

16.
Am J Hum Genet ; 104(2): 213-228, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639323

RESUMO

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.

17.
Neuroimage Clin ; 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30497982

RESUMO

Kabuki syndrome (KS) is a rare congenital disorder (1/32000 births) characterized by distinctive facial features, intellectual disability, short stature, and dermatoglyphic and skeletal abnormalities. In the last decade, mutations in KMT2D and KDM6A were identified as a major cause of kabuki syndrome. Although genetic abnormalities have been highlighted in KS, brain abnormalities have been little explored. Here, we have investigated brain abnormalities in 6 patients with KS (4 males; Mage = 10.96 years, SD = 2.97 years) with KMT2D mutation in comparison with 26 healthy controls (17 males; Mage = 10.31 years, SD = 2.96 years). We have used MRI to explore anatomical and functional brain abnormalities in patients with KS. Anatomical abnormalities in grey matter volume were assessed by cortical and subcortical analyses. Functional abnormalities were assessed by comparing rest cerebral blood flow measured with arterial spin labeling-MRI. When compared to healthy controls, KS patients had anatomical alterations characterized by grey matter decrease localized in the bilateral precentral gyrus and middle frontal gyrus. In addition, KS patients also presented functional alterations characterized by cerebral blood flow decrease in the left precentral gyrus and middle frontal gyrus. Moreover, subcortical analyses revealed significantly decreased grey matter volume in the bilateral hippocampus and dentate gyrus in patients with KS. Our results strongly indicate anatomical and functional brain abnormalities in KS. They suggest a possible neural basis of the cognitive symptoms observed in KS, such as fine motor impairment, and indicate the need to further explore the consequences of such brain abnormalities in this disorder. Finally, our results encourage further imaging-genetics studies investigating the link between genetics, anatomical and functional brain alterations in KS.

18.
Eur J Med Genet ; 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30389587

RESUMO

Hereditary hemorrhagic telangiectasia is usually linked to the presence of a pathogenic mutation ACVRL1 or ENG. Thus, apparently there is no benefit to perform an array CGH in case of HHT. However, ENG has been involved in a contiguous gene syndrome due to a de novo 9q33.3q34.11 microdeletion. We describe here a new contiguous gene syndrome involving ACVRL1 gene. A 50-year-old female patient had a typical clinical presentation of hereditary hemorrhagic telangiectasia (HHT) with epistaxis, cutaneous-mucous telangiectases, arteriovenous malformation. She also presented a cognitive disability. Cognitive assessment showed a heterogeneous cognitive disorder predominating in the executive sphere without intellectual deficiency. She had no peculiar morphological feature. Neurological examination disclosed the presence of contralateral mirror movements during voluntary movement of each hand. A heterozygous deletion of the whole ACVRL1 gene (exons 1 to 10) was found to be responsible for the HHT features. To investigate further the dysexecutive syndrome and the mirror movements, we performed oligonucleotide array comparative genomic hybridization (array CGH) study (180K, Agilent, Santa-Clara, CA, USA). This study revealed a de novo 1.58 Mb deletion on chromosome 12q13.12q13.13 encompassing the ACVRL1 and SCN8A genes. To our knowledge, this deletion has not been previously reported and defines a new contiguous gene syndrome. The loss of one ACVRL1 allele is likely to be responsible for the HHT phenotype, while the deletion of the SCN8A gene is likely to be the cause of the mild cognitive disorder. SCN8A haploinsufficiency might also be involved in the occurrence of mirror movements. This report highlights the benefit of searching for large rearrangements in cases including unusual symptoms in association with HHT. On the other hand, an early diagnosis of 12q13.12q13.13 microdeletion based on the presence of a dysexecutive syndrome and/or mirror movement may allow to prevent HHT complications.

19.
J Med Genet ; 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287593

RESUMO

BACKGROUND: The clinical significance of 16p13.11 duplications remains controversial while frequently detected in patients with developmental delay (DD), intellectual deficiency (ID) or autism spectrum disorder (ASD). Previously reported patients were not or poorly characterised. The absence of consensual recommendations leads to interpretation discrepancy and makes genetic counselling challenging. This study aims to decipher the genotype-phenotype correlations to improve genetic counselling and patients' medical care. METHODS: We retrospectively analysed data from 16 013 patients referred to 12 genetic centers for DD, ID or ASD, and who had a chromosomal microarray analysis. The referring geneticists of patients for whom a 16p13.11 duplication was detected were asked to complete a questionnaire for detailed clinical and genetic data for the patients and their parents. RESULTS: Clinical features are mainly speech delay and learning disabilities followed by ASD. A significant risk of cardiovascular disease was noted. About 90% of the patients inherited the duplication from a parent. At least one out of four parents carrying the duplication displayed a similar phenotype to the propositus. Genotype-phenotype correlations show no impact of the size of the duplicated segment on the severity of the phenotype. However, NDE1 and miR-484 seem to have an essential role in the neurocognitive phenotype. CONCLUSION: Our study shows that 16p13.11 microduplications are likely pathogenic when detected in the context of DD/ID/ASD and supports an essential role of NDE1 and miR-484 in the neurocognitive phenotype. Moreover, it suggests the need for cardiac evaluation and follow-up and a large study to evaluate the aortic disease risk.

20.
Genet Med ; 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30245510

RESUMO

PURPOSE: Contiguous gene deletions are known to cause several neurodevelopmental syndromes, many of which are caused by recurrent events on chromosome 16. However, chromosomal microarray studies (CMA) still yield copy-number variants (CNVs) of unknown clinical significance. We sought to characterize eight individuals with overlapping 205-kb to 504-kb 16p13.3 microdeletions that are distinct from previously published deletion syndromes. METHODS: Clinical information on the patients and bioinformatic scores for the deleted genes were analyzed. RESULTS: All individuals in our cohort displayed developmental delay, intellectual disability, and various forms of seizures. Six individuals were microcephalic and two had strabismus. The deletion was absent in all 13 parents who were available for testing. The area of overlap encompasses seven genes including TBC1D24, ATP6V0C, and PDPK1 (also known as PDK1). Bi-allelic TBC1D24 pathogenic variants are known to cause nonsyndromic deafness, epileptic disorders, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, seizures). Sanger sequencing of the nondeleted TBC1D24 allele did not yield any additional pathogenic variants. CONCLUSIONS: We propose that 16p13.3 microdeletions resulting in simultaneous haploinsufficiencies of TBC1D24, ATP6V0C, and PDPK1 cause a novel rare contiguous gene deletion syndrome of microcephaly, developmental delay, intellectual disability, and epilepsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA