Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 48(6)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643251

RESUMO

Multiple myeloma (MM) is an aggressive B cell malignancy. Substantial progress has been made in the therapeutic context for patients with MM, however it still represents an incurable disease due to drug resistance and recurrence. Development of more effective or synergistic therapeutic approaches undoubtedly represents an unmet clinical need. Tomentosin is a bioactive natural sesquiterpene lactone extracted by various plants with therapeutic properties, including anti­neoplastic effects. In the present study, the potential antitumor activity of tomentosin was evaluated on the human RPMI­8226 cell line, treated with increasing tomentosin concentration for cytotoxicity screening. The data suggested that both cell cycle arrest and cell apoptosis could explain the antiproliferative effects of tomentosin and may result in the inhibition of RPMI­8226 cell viability. To assess differentially expressed genes contributing to tomentosin activity and identify its mechanism of action, a microarray gene expression profile was performed, identifying 126 genes deregulated by tomentosin. To address the systems biology and identify how tomentosin deregulates gene expression in MM from a systems perspective, all deregulated genes were submitted to enrichment and molecular network analysis. The Protein­Protein Interaction (PPI) network analysis showed that tomentosin in human MM induced the downregulation of genes involved in several pathways known to lead immune­system processes, such as cytokine­cytokine receptor interaction, chemokine or NF­κB signaling pathway, as well as genes involved in pathways playing a central role in cellular neoplastic processes, such as growth, proliferation, migration, invasion and apoptosis. Tomentosin also induced endoplasmic reticulum stress via upregulation of cyclic AMP­dependent transcription factor ATF­4 and DNA damage­inducible transcript 3 protein genes, suggesting that in the presence of tomentosin the protective unfolded protein response signaling may induce cell apoptosis. The functional connections analysis executed using the Connectivity Map tool, suggested that the effects of tomentosin on RPMI­8226 cells might be similar to those exerted by heat shock proteins inhibitors. Taken together, these data suggested that tomentosin may be a potential drug candidate for the treatment of MM.

2.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445327

RESUMO

The fight against cancer is one of the main challenges for medical research. Recently, nanotechnology has made significant progress, providing possibilities for developing innovative nanomaterials to overcome the common limitations of current therapies. In this context, silver nanoparticles (AgNPs) represent a promising nano-tool able to offer interesting applications for cancer research. Following this path, we combined the silver proprieties with Artemisia arborescens characteristics, producing novel nanoparticles called Artemisia-AgNPs. A "green" synthesis method was performed to produce Artemisia-AgNPs, using Artemisia arborescens extracts. This kind of photosynthesis is an eco-friendly, inexpensive, and fast approach. Moreover, the bioorganic molecules of plant extracts improved the biocompatibility and efficacy of Artemisia-AgNPs. The Artemisia-AgNPs were fully characterized and tested to compare their effects on various cancer cell lines, in particular HeLa and MCF-7. Artemisia-AgNPs treatment showed dose-dependent growth inhibition of cancer cells. Moreover, we evaluated their impact on the cell cycle, observing a G1 arrest mediated by Artemisia-AgNPs treatment. Using a clonogenic assay after treatment, we observed a complete lack of cell colonies, which demonstrated cell reproducibility death. To have a broader overview on gene expression impact, we performed RNA-sequencing, which demonstrated the potential of Artemisia-AgNPs as a suitable candidate tool in cancer research.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Artemisia/química , Nanopartículas Metálicas , Prata , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/genética , Artemisia/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Química Verde , Células HeLa , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Células PC-3 , Extratos Vegetais/química , Prata/química , Prata/uso terapêutico
3.
Eur J Med Chem ; 222: 113590, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34139625

RESUMO

Microtubules (MTs) are the principal target for drugs acting against mitosis. These compounds, called microtubule targeting agents (MTAs), cause a mitotic arrest during G2/M phase, subsequently inducing cell apoptosis. MTAs could be classified in two groups: microtubule stabilising agents (MSAs) and microtubule destabilising agents (MDAs). In this paper we present a new series of (E) (Z)-2-(5,6-difluoro-(1H)2H-benzo[d] [1,2,3]triazol-1(2)-yl)-3-(R)acrylonitrile (9a-j, 10e, 11a,b) and (E)-2-(1H-benzo[d] [1,2,3]triazol-1-yl)-3-(R)acrylonitrile derivatives (13d,j), which were recognised to act as MTAs agents. They were rationally designed, synthesised, characterised and subjected to different biological assessments. Computational docking was carried out in order to investigate the potential binding to the colchicine-binding site on tubulin. From this first prediction, the di-fluoro substitution seemed to be beneficial for the binding affinity with tubulin. The new fluorine derivatives, here presented, showed an improved antiproliferative activity when compared to the previously reported compounds. The biological evaluation included a preliminary antiproliferative screening on NCI60 cancer cells panel (1-10 µM). Compound 9a was selected as lead compound of the new series of derivatives. The in vitro XTT assay, flow cytometry analysis and immunostaining performed on HeLa cells treated with 9a showed a considerable antiproliferative effect, (IC50 = 3.2 µM), an increased number of cells in G2/M-phase, followed by an enhancement in cell division defects. Moreover, ß-tubulin staining confirmed 9a as a MDA triggering tubulin disassembly, whereas colchicine-9a competition assay suggested that compound 9a compete with colchicine for the binding site on tubulin. Then, the co-administration of compound 9a and an extrusion pump inhibitor (EPI) was investigated: the association resulted beneficial for the antiproliferative activity and compound 9a showed to be client of extrusion pumps. Finally, structural superimposition of different colchicine binding site inhibitors (CBIs) in clinical trial and our MDA, provided an additional confirmation of the targeting to the predicted binding site. Physicochemical, pharmacokinetic and druglikeness predictions were also conducted and all the newly synthesised derivatives showed to be drug-like molecules.


Assuntos
Acrilonitrila/farmacologia , Antineoplásicos/farmacologia , Microtúbulos/efeitos dos fármacos , Triazóis/farmacologia , Acrilonitrila/química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Mitose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química
4.
J Cell Physiol ; 236(5): 3789-3799, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33089499

RESUMO

1,3,4-Oxadiazole derivatives are widely used in research on antineoplastic drugs. Recently, we discovered a novel unsymmetrical 1,3,4-oxadiazole compound with antiproliferative properties called 2j. To further investigate its possible targets and molecular mechanisms, RNA-seq was performed and the differentially expressed genes (DEGs) were obtained after treatment. Data were analyzed using functional (Gene Ontology term) and pathway (Kyoto Encyclopedia of Genes and Genomes) enrichment of the DEGs. The hub genes were determined by the analysis of protein-protein interaction networks. The connectivity map (CMap) information provided insight into the model action of antitumor small molecule drugs. Hub genes have been identified through function gene networks using STRING analysis. The small molecular targets obtained by CMap comparison showed that 2j is a tubulin inhibitor and it acts mainly affecting tumor cells through the cell cycle, FoxO signaling pathway, apoptotic, and p53 signaling pathways. The possible targets of 2j could be TUBA1A and TUBA4A. Molecular docking results indicated that 2j interacts at the colchicine-binding site on tubulin.

5.
Chem Biol Interact ; 312: 108813, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494105

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric tumor, which arises from muscle precursor cells. Recently, it has been demonstrated that Hippo Pathway (Hpo), a pathway that regulates several physiological and biological features, is involved in RMS tumorigenesis. For instance, an upregulation of the Hpo downstream effector Yes-Associated Protein 1 (YAP) leads to the development of embryonal rhabdomyosarcoma (eRMS) in murine activated muscle satellite cells. On the other hand, the YAP paralog transcriptional co-activator with PDZ-binding motif (TAZ) is overexpressed in alveolar rhabdomyosarcoma (aRMS) patients with poor survival. YAP and TAZ exhibit both cytoplasmic and nuclear functions. In the nucleus, YAP binds TEADs (TEA domain family members) factors and together they constitute a complex that is able either to activate the transcription of several genes such as MYC, Tbx5 and PAX8 or to maintain the stability of others like p73. Due to the key role of YAP and TAZ in cancer, the identification and/or development of new compounds able to block their activity might be an effective antineoplastic strategy. Verteporfin (VP) is a molecule able to stop the formation of YAP/TEAD complex in the nucleus. The aim of this study is to evaluate the action of VP on RMS cell lines. This work shows that VP has an anti-proliferative activity on all RMS cell lines analyzed. Depending on RMS cell lines, VP affects cell cycle differently. Moreover, VP is able to decrease YAP protein levels, and to induce the activation of apoptosis mechanism through the cleavage of PARP-1. In addition, Annexin V assay showed the activation of apoptosis and necrosis after VP treatment. In summary, the ability of VP to disrupt RMS cell proliferation could be a novel and valuable strategy to improve the therapeutic approaches in treating rhabdomyosarcoma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Verteporfina/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Rabdomiossarcoma Embrionário/metabolismo , Rabdomiossarcoma Embrionário/patologia , Fatores de Transcrição/metabolismo
6.
J Cell Physiol ; 233(9): 6508-6517, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29574790

RESUMO

Nowadays, epigenetics covers a crucial role in different fields of science. The enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2), is a big proponent of how epigenetic changes can affect the initiation and progression of several diseases. Through its catalytic activity, responsible for the tri-methylation of lysine 27 of the histone H3 (H3K27me3), EZH2 is a good target for both diagnosis and therapy of different pathologies. A large number of studies have demonstrated its crucial role in cancer initiation and progression. Nevertheless, only recently its function in virus diseases has been uncovered; therefore, EZH2 can be an important promoter of viral carcinogenesis. This review explores the role of EZH2 in viral epigenetics based on recent progress that demonstrated the role of this protein in virus environment. In particular, the review focuses on EZH2 behavior in Hepatitis B Virus, analyzing its role in the rise of Hepatocellular Carcinoma.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigênese Genética/genética , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Hepatite B/genética , Hepatite B/virologia , Humanos , Neoplasias Hepáticas/patologia
7.
J Cell Physiol ; 233(3): 2360-2365, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28722764

RESUMO

Rhabdomyosarcoma (RMS) is a soft tissue sarcoma that arises from muscle precursors affecting predominately children and young adults. It can be divided into two main classes: embryonal (eRMS) and alveolar rhabodomyosarcomas (aRMS). Despite the expression of early muscle specific genes, RMS cells fail to complete myogenesis even in differentiation conditions. We previously demonstrated that Enhancer Zeste of Homolog 2 (EZH2), the catalytic subunits of PRC2 complex, contributes to inhibit muscle differentiation in eRMS and its down-regulation causes a partial recovery of myogenesis. 12-O-tetradecanoylphorbol-13-acetate (TPA) is a molecule able to induce differentiation in eRMS with a mechanism that involves the protein kinase C (PKC). In this paper we report that treatment with TPA reduces the expression of EZH2 without affecting levels of H3K27me3. The combination of TPA with GSK126, an inhibitor of the catalytic activity of EZH2, has a synergic effect on the induction of muscle differentiation in RD rhabdomyosarcoma cells, suggesting a new therapeutic combinatory approach for RMS treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Piridonas/farmacologia , Rabdomiossarcoma Embrionário/tratamento farmacológico , Acetato de Tetradecanoilforbol/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Humanos , Metilação , Rabdomiossarcoma Embrionário/metabolismo , Rabdomiossarcoma Embrionário/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
9.
Appl Immunohistochem Mol Morphol ; 25(4): 289-297, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27258558

RESUMO

During the restoration of the Saint Antonio Abate Cathedral in Castelsardo, Sardinia, Italy, numerous human remains were found in a crypt. The burial site contained upwards of 120 individuals organized in successive layers from the bottom of the crypt; of these, 18 partially mummified individuals have been identified, including the last 2 individuals buried in the crypt. In the present study, we focused on these 2 individuals by initially adopting a morphologic and anthropological approach. The anthropological analysis of the remains showed that the 2 bodies were partially mummified and that most of the organs were not available; for this reason, the sex was determined by secondary sexual characteristics of the skulls and the long bones. The aim of this research was to describe the general state of the mummified bodies and tissues by morphologic and ultrastructural analysis using light and electron microscopy techniques. To ensure the preservation of specific tissue proteins, immunohistochemical fluorescence analysis was used. Limited information is available regarding the preservation of mummified tissues. Thus, this study demonstrated the presence of muscle and skin tissue markers in a good state of preservation, even though the tissues had undergone a slow mummification process. Our results demonstrate that several types of tissues and cell proteins may survive over a prolonged period and that these materials survive the postmortem processes.


Assuntos
Imuno-Histoquímica/métodos , Múmias/patologia , Músculos/patologia , Pele/patologia , Imunofluorescência , Humanos , Itália , Masculino , Proteínas/metabolismo
10.
J Med Chem ; 59(23): 10451-10469, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27801583

RESUMO

A series of novel 1,3,4-oxadiazoles was synthesized and evaluated for their cytotoxic activity in in vitro tumor models. Four of the new compounds (2d, 2j, 2k, and 2n) showed growth inhibition in the XTT dye assay. The most active agent, 2j, showed high potency against human cancer cells with IC50s ranging from 0.05 to 1.7 µM. Preliminary SAR correlations suggested that the nature of chains on the oxadiazole is important for antitumor potency in vitro. Compound 2j determined a G2/M arrest of the cell cycle and also activated a strong apoptotic response. The ß-tubulin immunofluorescence analysis indicated that compound 2j effectively inhibited the microtubule organization in all cancer cell lines, causing the formation of abnormal spindle, which did not affect the normal human fibroblast cells NB1, Mrc-5 and IBR3. For all these reasons, compound 2j could be a good candidate in chemopreventive or chemotherapeutic strategies.


Assuntos
Antineoplásicos/farmacologia , Oxidiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...